{"title":"2023 年图尔基耶双地震震源区剪切波分裂参数的变化","authors":"Xuelai Cao, Lijun Chang","doi":"10.1016/j.eqs.2024.01.016","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 doublet earthquakes (event 1 and event 2, respectively) were measured from June 1, 2022, to April 25, 2023, and their spatiotemporal characteristics were analyzed. The results revealed clear spatial and temporal differences. Spatially, the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress, as characterized by focal mechanism solutions of seismic events (<em>M</em><sub>W</sub>≥3.5) near the station. The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate, African Plate, and Anatolian Block. Along the Nurdagi-Pazarcik fault zone, the seismic fault of event 1, stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock. In addition, the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgü fault also exhibited large delay times. The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field, which is closely related to the state of the block motion. During the seismogenic process of the <em>M</em><sub>W</sub>7.7 earthquake, more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault. Under the influence of the <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 events, the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes, and the crustal stress and its adjustment range near the outer stations increased significantly. With the exception of two stations with few effective events, all stations showed a consistent change in shear-wave splitting parameters over time. In particular, each station showed a decreasing trend in delay times after the doublet earthquakes, reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes. With the occurrence of the earthquake doublet and a large number of aftershocks, the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released, and then the adjustment range of crustal stress is also gradually reduced.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167445192400020X/pdfft?md5=25902bb748fb39f75feb7ddd3666a177&pid=1-s2.0-S167445192400020X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes\",\"authors\":\"Xuelai Cao, Lijun Chang\",\"doi\":\"10.1016/j.eqs.2024.01.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 doublet earthquakes (event 1 and event 2, respectively) were measured from June 1, 2022, to April 25, 2023, and their spatiotemporal characteristics were analyzed. The results revealed clear spatial and temporal differences. Spatially, the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress, as characterized by focal mechanism solutions of seismic events (<em>M</em><sub>W</sub>≥3.5) near the station. The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate, African Plate, and Anatolian Block. Along the Nurdagi-Pazarcik fault zone, the seismic fault of event 1, stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock. In addition, the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgü fault also exhibited large delay times. The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field, which is closely related to the state of the block motion. During the seismogenic process of the <em>M</em><sub>W</sub>7.7 earthquake, more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault. Under the influence of the <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 events, the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes, and the crustal stress and its adjustment range near the outer stations increased significantly. With the exception of two stations with few effective events, all stations showed a consistent change in shear-wave splitting parameters over time. In particular, each station showed a decreasing trend in delay times after the doublet earthquakes, reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes. With the occurrence of the earthquake doublet and a large number of aftershocks, the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released, and then the adjustment range of crustal stress is also gradually reduced.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S167445192400020X/pdfft?md5=25902bb748fb39f75feb7ddd3666a177&pid=1-s2.0-S167445192400020X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S167445192400020X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167445192400020X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes
In this study, the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes (event 1 and event 2, respectively) were measured from June 1, 2022, to April 25, 2023, and their spatiotemporal characteristics were analyzed. The results revealed clear spatial and temporal differences. Spatially, the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress, as characterized by focal mechanism solutions of seismic events (MW≥3.5) near the station. The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate, African Plate, and Anatolian Block. Along the Nurdagi-Pazarcik fault zone, the seismic fault of event 1, stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock. In addition, the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgü fault also exhibited large delay times. The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field, which is closely related to the state of the block motion. During the seismogenic process of the MW7.7 earthquake, more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault. Under the influence of the MW7.7 and MW7.6 events, the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes, and the crustal stress and its adjustment range near the outer stations increased significantly. With the exception of two stations with few effective events, all stations showed a consistent change in shear-wave splitting parameters over time. In particular, each station showed a decreasing trend in delay times after the doublet earthquakes, reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes. With the occurrence of the earthquake doublet and a large number of aftershocks, the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released, and then the adjustment range of crustal stress is also gradually reduced.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.