IGF-Fit:用于点云法线估算的隐式梯度场拟合

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Bowen Lyu , Li-Yong Shen , Chun-Ming Yuan
{"title":"IGF-Fit:用于点云法线估算的隐式梯度场拟合","authors":"Bowen Lyu ,&nbsp;Li-Yong Shen ,&nbsp;Chun-Ming Yuan","doi":"10.1016/j.gmod.2024.101214","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce IGF-Fit, a novel method for estimating surface normals from point clouds with varying noise and density. Unlike previous approaches that rely on point-wise weights and explicit representations, IGF-Fit employs a network that learns an implicit representation and uses derivatives to predict normals. The input patch serves as both a shape latent vector and query points for fitting the implicit representation. To handle noisy input, we introduce a novel noise transformation module with a training strategy for noise classification and latent vector bias prediction. Our experiments on synthetic and real-world scan datasets demonstrate the effectiveness of IGF-Fit, achieving state-of-the-art performance on both noise-free and density-varying data.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101214"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S152407032400002X/pdfft?md5=49f2d24bca30ab2fb9811c74fa197c78&pid=1-s2.0-S152407032400002X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"IGF-Fit: Implicit gradient field fitting for point cloud normal estimation\",\"authors\":\"Bowen Lyu ,&nbsp;Li-Yong Shen ,&nbsp;Chun-Ming Yuan\",\"doi\":\"10.1016/j.gmod.2024.101214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce IGF-Fit, a novel method for estimating surface normals from point clouds with varying noise and density. Unlike previous approaches that rely on point-wise weights and explicit representations, IGF-Fit employs a network that learns an implicit representation and uses derivatives to predict normals. The input patch serves as both a shape latent vector and query points for fitting the implicit representation. To handle noisy input, we introduce a novel noise transformation module with a training strategy for noise classification and latent vector bias prediction. Our experiments on synthetic and real-world scan datasets demonstrate the effectiveness of IGF-Fit, achieving state-of-the-art performance on both noise-free and density-varying data.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"133 \",\"pages\":\"Article 101214\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S152407032400002X/pdfft?md5=49f2d24bca30ab2fb9811c74fa197c78&pid=1-s2.0-S152407032400002X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S152407032400002X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152407032400002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 IGF-Fit,这是一种从具有不同噪声和密度的点云中估计表面法线的新方法。与以往依赖于点权重和显式表示的方法不同,IGF-Fit 采用的是一种学习隐式表示并使用导数预测法线的网络。输入斑块既是形状潜在向量,也是拟合隐式表示的查询点。为了处理噪声输入,我们引入了一个新颖的噪声转换模块,该模块具有噪声分类和潜向量偏差预测的训练策略。我们在合成和实际扫描数据集上进行的实验证明了 IGF-Fit 的有效性,它在无噪声和密度变化数据上都取得了一流的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

IGF-Fit: Implicit gradient field fitting for point cloud normal estimation

IGF-Fit: Implicit gradient field fitting for point cloud normal estimation

We introduce IGF-Fit, a novel method for estimating surface normals from point clouds with varying noise and density. Unlike previous approaches that rely on point-wise weights and explicit representations, IGF-Fit employs a network that learns an implicit representation and uses derivatives to predict normals. The input patch serves as both a shape latent vector and query points for fitting the implicit representation. To handle noisy input, we introduce a novel noise transformation module with a training strategy for noise classification and latent vector bias prediction. Our experiments on synthetic and real-world scan datasets demonstrate the effectiveness of IGF-Fit, achieving state-of-the-art performance on both noise-free and density-varying data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信