Feng Jiang, Xinxin Li, Lei Liu, Zhiyang Xie, Xiaotao Wu, Yuntao Wang
{"title":"基于机器学习的椎弓根螺钉松动自动预测模型,用于预测退行性腰椎融合手术后的椎弓根螺钉松动。","authors":"Feng Jiang, Xinxin Li, Lei Liu, Zhiyang Xie, Xiaotao Wu, Yuntao Wang","doi":"10.5582/bst.2023.01327","DOIUrl":null,"url":null,"abstract":"<p><p>The adequacy of screw anchorage is a critical factor in achieving successful spinal fusion. This study aimed to use machine learning algorithms to identify critical variables and predict pedicle screw loosening after degenerative lumbar fusion surgery. A total of 552 patients who underwent primary transpedicular lumbar fixation for lumbar degenerative disease were included. The LASSO method identified key features associated with pedicle screw loosening. Patient clinical characteristics, intraoperative variables, and radiographic parameters were collected and used to construct eight machine learning models, including a training set (80% of participants) and a test set (20% of participants). The XGBoost model exhibited the best performance, with an AUC of 0.884 (95% CI: 0.825-0.944) in the test set, along with the lowest Brier score. Ten crucial variables, including age, disease diagnosis: degenerative scoliosis, number of fused levels, fixation to S1, HU value, preoperative PT, preoperative PI-LL, postoperative LL, postoperative PT, and postoperative PI-LL were selected. In the prospective cohort, the XGBoost model demonstrated substantial performance with an accuracy of 83.32%. This study identified crucial variables associated with pedicle screw loosening after degenerative lumbar fusion surgery and successfully developed a machine learning model to predict pedicle screw loosening. The findings of this study may provide valuable information for clinical decision-making.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"83-93"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated machine learning-based model for the prediction of pedicle screw loosening after degenerative lumbar fusion surgery.\",\"authors\":\"Feng Jiang, Xinxin Li, Lei Liu, Zhiyang Xie, Xiaotao Wu, Yuntao Wang\",\"doi\":\"10.5582/bst.2023.01327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adequacy of screw anchorage is a critical factor in achieving successful spinal fusion. This study aimed to use machine learning algorithms to identify critical variables and predict pedicle screw loosening after degenerative lumbar fusion surgery. A total of 552 patients who underwent primary transpedicular lumbar fixation for lumbar degenerative disease were included. The LASSO method identified key features associated with pedicle screw loosening. Patient clinical characteristics, intraoperative variables, and radiographic parameters were collected and used to construct eight machine learning models, including a training set (80% of participants) and a test set (20% of participants). The XGBoost model exhibited the best performance, with an AUC of 0.884 (95% CI: 0.825-0.944) in the test set, along with the lowest Brier score. Ten crucial variables, including age, disease diagnosis: degenerative scoliosis, number of fused levels, fixation to S1, HU value, preoperative PT, preoperative PI-LL, postoperative LL, postoperative PT, and postoperative PI-LL were selected. In the prospective cohort, the XGBoost model demonstrated substantial performance with an accuracy of 83.32%. This study identified crucial variables associated with pedicle screw loosening after degenerative lumbar fusion surgery and successfully developed a machine learning model to predict pedicle screw loosening. The findings of this study may provide valuable information for clinical decision-making.</p>\",\"PeriodicalId\":8957,\"journal\":{\"name\":\"Bioscience trends\",\"volume\":\" \",\"pages\":\"83-93\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience trends\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5582/bst.2023.01327\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2023.01327","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Automated machine learning-based model for the prediction of pedicle screw loosening after degenerative lumbar fusion surgery.
The adequacy of screw anchorage is a critical factor in achieving successful spinal fusion. This study aimed to use machine learning algorithms to identify critical variables and predict pedicle screw loosening after degenerative lumbar fusion surgery. A total of 552 patients who underwent primary transpedicular lumbar fixation for lumbar degenerative disease were included. The LASSO method identified key features associated with pedicle screw loosening. Patient clinical characteristics, intraoperative variables, and radiographic parameters were collected and used to construct eight machine learning models, including a training set (80% of participants) and a test set (20% of participants). The XGBoost model exhibited the best performance, with an AUC of 0.884 (95% CI: 0.825-0.944) in the test set, along with the lowest Brier score. Ten crucial variables, including age, disease diagnosis: degenerative scoliosis, number of fused levels, fixation to S1, HU value, preoperative PT, preoperative PI-LL, postoperative LL, postoperative PT, and postoperative PI-LL were selected. In the prospective cohort, the XGBoost model demonstrated substantial performance with an accuracy of 83.32%. This study identified crucial variables associated with pedicle screw loosening after degenerative lumbar fusion surgery and successfully developed a machine learning model to predict pedicle screw loosening. The findings of this study may provide valuable information for clinical decision-making.
期刊介绍:
BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.