Qian Yang, Mengyi Wang, Huan Wang, Cheng Ren, Yifu Li
{"title":"外源性硫化氢可防止 SOD2 降解,保护糖尿病肾病患者的肾功能","authors":"Qian Yang, Mengyi Wang, Huan Wang, Cheng Ren, Yifu Li","doi":"10.1139/bcb-2023-0295","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is a major contributor to chronic kidney disease. Hydrogen sulfide (H<sub>2</sub>S) serves as an endogenous gaseous signaling molecule capable of safeguarding renal function within the context of DKD. However, the underlying mechanisms need to be elucidated. This study was undertaken to unveil the mechanisms by which H<sub>2</sub>S counteracts against DKD. Utilizing mice and human renal tubular epithelial (HK-2) cells, we demonstrated a reduction in cystathionine-γ-lyase/H<sub>2</sub>S levels within renal tissues of db/db mice and in HK-2 cells subjected to hyperglycemic and hyperlipidemic environments. Notably, we observed that sodium hydrosulfide (NaHS) supplementation could serve as an exogenous source of H<sub>2</sub>S. Exogenous H<sub>2</sub>S exhibited the capacity to mitigate the accumulation of reactive oxygen species and attenuate the degradation of superoxide dismutase 2 (SOD2) by Lon protease homolog 1 induced by hyperglycemia and hyperlipidemia, thus affording cellular protection against mitochondrial apoptosis. Consequently, NaHS treatment led to decreased serum levels of blood urea nitrogen and serum creatinine, reflecting alleviated renal damage and thereby preserving renal function in db/db mice. Based on these findings, we propose that exogenous H<sub>2</sub>S exerts a protective role against DKD by inhibiting SOD2 degradation.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"252-261"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous hydrogen sulfide prevents SOD2 degradation to safeguard renal function in diabetic kidney disease.\",\"authors\":\"Qian Yang, Mengyi Wang, Huan Wang, Cheng Ren, Yifu Li\",\"doi\":\"10.1139/bcb-2023-0295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic kidney disease (DKD) is a major contributor to chronic kidney disease. Hydrogen sulfide (H<sub>2</sub>S) serves as an endogenous gaseous signaling molecule capable of safeguarding renal function within the context of DKD. However, the underlying mechanisms need to be elucidated. This study was undertaken to unveil the mechanisms by which H<sub>2</sub>S counteracts against DKD. Utilizing mice and human renal tubular epithelial (HK-2) cells, we demonstrated a reduction in cystathionine-γ-lyase/H<sub>2</sub>S levels within renal tissues of db/db mice and in HK-2 cells subjected to hyperglycemic and hyperlipidemic environments. Notably, we observed that sodium hydrosulfide (NaHS) supplementation could serve as an exogenous source of H<sub>2</sub>S. Exogenous H<sub>2</sub>S exhibited the capacity to mitigate the accumulation of reactive oxygen species and attenuate the degradation of superoxide dismutase 2 (SOD2) by Lon protease homolog 1 induced by hyperglycemia and hyperlipidemia, thus affording cellular protection against mitochondrial apoptosis. Consequently, NaHS treatment led to decreased serum levels of blood urea nitrogen and serum creatinine, reflecting alleviated renal damage and thereby preserving renal function in db/db mice. Based on these findings, we propose that exogenous H<sub>2</sub>S exerts a protective role against DKD by inhibiting SOD2 degradation.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"252-261\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0295\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0295","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exogenous hydrogen sulfide prevents SOD2 degradation to safeguard renal function in diabetic kidney disease.
Diabetic kidney disease (DKD) is a major contributor to chronic kidney disease. Hydrogen sulfide (H2S) serves as an endogenous gaseous signaling molecule capable of safeguarding renal function within the context of DKD. However, the underlying mechanisms need to be elucidated. This study was undertaken to unveil the mechanisms by which H2S counteracts against DKD. Utilizing mice and human renal tubular epithelial (HK-2) cells, we demonstrated a reduction in cystathionine-γ-lyase/H2S levels within renal tissues of db/db mice and in HK-2 cells subjected to hyperglycemic and hyperlipidemic environments. Notably, we observed that sodium hydrosulfide (NaHS) supplementation could serve as an exogenous source of H2S. Exogenous H2S exhibited the capacity to mitigate the accumulation of reactive oxygen species and attenuate the degradation of superoxide dismutase 2 (SOD2) by Lon protease homolog 1 induced by hyperglycemia and hyperlipidemia, thus affording cellular protection against mitochondrial apoptosis. Consequently, NaHS treatment led to decreased serum levels of blood urea nitrogen and serum creatinine, reflecting alleviated renal damage and thereby preserving renal function in db/db mice. Based on these findings, we propose that exogenous H2S exerts a protective role against DKD by inhibiting SOD2 degradation.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.