知情交易强度

IF 7.6 1区 经济学 Q1 BUSINESS, FINANCE
VINCENT BOGOUSSLAVSKY, VYACHESLAV FOS, DMITRIY MURAVYEV
{"title":"知情交易强度","authors":"VINCENT BOGOUSSLAVSKY,&nbsp;VYACHESLAV FOS,&nbsp;DMITRIY MURAVYEV","doi":"10.1111/jofi.13320","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We train a machine learning method on a class of informed trades to develop a new measure of informed trading, informed trading intensity (ITI). ITI increases before earnings, mergers and acquisitions, and news announcements, and has implications for return reversal and asset pricing. ITI is effective because it captures nonlinearities and interactions between informed trading, volume, and volatility. This data-driven approach can shed light on the economics of informed trading, including impatient informed trading, commonality in informed trading, and models of informed trading. Overall, learning from informed trading data can generate an effective informed trading measure.</p></div>","PeriodicalId":15753,"journal":{"name":"Journal of Finance","volume":"79 2","pages":"903-948"},"PeriodicalIF":7.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informed Trading Intensity\",\"authors\":\"VINCENT BOGOUSSLAVSKY,&nbsp;VYACHESLAV FOS,&nbsp;DMITRIY MURAVYEV\",\"doi\":\"10.1111/jofi.13320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We train a machine learning method on a class of informed trades to develop a new measure of informed trading, informed trading intensity (ITI). ITI increases before earnings, mergers and acquisitions, and news announcements, and has implications for return reversal and asset pricing. ITI is effective because it captures nonlinearities and interactions between informed trading, volume, and volatility. This data-driven approach can shed light on the economics of informed trading, including impatient informed trading, commonality in informed trading, and models of informed trading. Overall, learning from informed trading data can generate an effective informed trading measure.</p></div>\",\"PeriodicalId\":15753,\"journal\":{\"name\":\"Journal of Finance\",\"volume\":\"79 2\",\"pages\":\"903-948\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jofi.13320\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jofi.13320","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们对一类知情交易进行了机器学习方法训练,从而开发出一种新的知情交易衡量方法--知情交易强度(ITI)。ITI 在盈利、并购和新闻发布前会增加,并对回报反转和资产定价产生影响。ITI 之所以有效,是因为它捕捉到了知情交易、交易量和波动率之间的非线性和相互作用。这种数据驱动的方法可以揭示知情交易的经济学原理,包括急躁的知情交易、知情交易的共性以及知情交易的模型。总之,从知情交易数据中学习可以产生有效的知情交易衡量标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informed Trading Intensity

We train a machine learning method on a class of informed trades to develop a new measure of informed trading, informed trading intensity (ITI). ITI increases before earnings, mergers and acquisitions, and news announcements, and has implications for return reversal and asset pricing. ITI is effective because it captures nonlinearities and interactions between informed trading, volume, and volatility. This data-driven approach can shed light on the economics of informed trading, including impatient informed trading, commonality in informed trading, and models of informed trading. Overall, learning from informed trading data can generate an effective informed trading measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance
Journal of Finance Multiple-
CiteScore
12.90
自引率
2.50%
发文量
88
期刊介绍: The Journal of Finance is a renowned publication that disseminates cutting-edge research across all major fields of financial inquiry. Widely regarded as the most cited academic journal in finance, each issue reaches over 8,000 academics, finance professionals, libraries, government entities, and financial institutions worldwide. Published bi-monthly, the journal serves as the official publication of The American Finance Association, the premier academic organization dedicated to advancing knowledge and understanding in financial economics. Join us in exploring the forefront of financial research and scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信