Shuai Zhang, Yuanze Du*, Yingwang Zhao and Lifu Zhou,
{"title":"基于双线性卷积神经网络与少镜头学习的矿井涌水图像识别","authors":"Shuai Zhang, Yuanze Du*, Yingwang Zhao and Lifu Zhou, ","doi":"10.1021/acsomega.3c09735","DOIUrl":null,"url":null,"abstract":"<p >With the increasingly widespread application of deep learning technology in the field of coal mines, the image recognition of mine water inrush has become a hot research topic. Underground environments are complex, and images have a high noise and low brightness. Additionally, mine water inrush is accidental, and few actual image samples are available. Therefore, this paper proposes an algorithm that recognizes mine water inrush images based on few-shot deep learning. According to the characteristics of images with coal wall water seepage, a bilinear neural network was used to extract the image features and enhance the network’s fine-grained image recognition. First, features were extracted using a bilinear convolutional neural network. Second, the network was pre-trained based on cosine similarity. Finally, the network was fine-tuned for the predicted image. For single-line feature extraction, the method is compared with big data and few-shot learning. According to the experimental results, the recognition rate reaches 95.2% for few-shot learning based on a bilinear neural network, thus demonstrating its effectiveness.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 10","pages":"12027–12036"},"PeriodicalIF":4.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.3c09735","citationCount":"0","resultStr":"{\"title\":\"Image Recognition of Mine Water Inrush Based on Bilinear Convolutional Neural Network with Few-Shot Learning\",\"authors\":\"Shuai Zhang, Yuanze Du*, Yingwang Zhao and Lifu Zhou, \",\"doi\":\"10.1021/acsomega.3c09735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the increasingly widespread application of deep learning technology in the field of coal mines, the image recognition of mine water inrush has become a hot research topic. Underground environments are complex, and images have a high noise and low brightness. Additionally, mine water inrush is accidental, and few actual image samples are available. Therefore, this paper proposes an algorithm that recognizes mine water inrush images based on few-shot deep learning. According to the characteristics of images with coal wall water seepage, a bilinear neural network was used to extract the image features and enhance the network’s fine-grained image recognition. First, features were extracted using a bilinear convolutional neural network. Second, the network was pre-trained based on cosine similarity. Finally, the network was fine-tuned for the predicted image. For single-line feature extraction, the method is compared with big data and few-shot learning. According to the experimental results, the recognition rate reaches 95.2% for few-shot learning based on a bilinear neural network, thus demonstrating its effectiveness.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 10\",\"pages\":\"12027–12036\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.3c09735\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.3c09735\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.3c09735","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Image Recognition of Mine Water Inrush Based on Bilinear Convolutional Neural Network with Few-Shot Learning
With the increasingly widespread application of deep learning technology in the field of coal mines, the image recognition of mine water inrush has become a hot research topic. Underground environments are complex, and images have a high noise and low brightness. Additionally, mine water inrush is accidental, and few actual image samples are available. Therefore, this paper proposes an algorithm that recognizes mine water inrush images based on few-shot deep learning. According to the characteristics of images with coal wall water seepage, a bilinear neural network was used to extract the image features and enhance the network’s fine-grained image recognition. First, features were extracted using a bilinear convolutional neural network. Second, the network was pre-trained based on cosine similarity. Finally, the network was fine-tuned for the predicted image. For single-line feature extraction, the method is compared with big data and few-shot learning. According to the experimental results, the recognition rate reaches 95.2% for few-shot learning based on a bilinear neural network, thus demonstrating its effectiveness.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.