Jacqueline Arriagada, C. Angelo Guevara, Marcela Munizaga, Song Gao
{"title":"利用大规模智能卡数据建立基于经验学习的公交路线选择模型","authors":"Jacqueline Arriagada, C. Angelo Guevara, Marcela Munizaga, Song Gao","doi":"10.1007/s11116-024-10465-w","DOIUrl":null,"url":null,"abstract":"<p>Taking learning into account when modelling passengers’ route choice behaviour improves understanding and forecasting of their preferences, which helps stakeholders better design public transport systems to meet user needs. Most empirical studies have neglected the relationship between current choices and passengers’ past experiences that lead to a learning process about route attributes. This study addresses this gap by using real observed choices from smart-card data to implement a route choice model that takes into account the learning process of passengers during the inauguration of a new metro line in Santiago, Chile. An instance-based learning (IBL) model is used to represent individually perceived in-vehicle travel time in the route choice model. It accounts for recency and reinforcement of experience using the power law of forgetting. The empirical evaluation uses 8 weeks of smart-card data after the introduction of the metro line. Model parameters are evaluated, and the fit and behavioural coherence achieved by the IBL route choice model is measured against a baseline model. The baseline model neglects passenger learning from experience and assumes that all passengers use only trip descriptive information in their decision-making process. The IBL route choice model outperforms the baseline model from the fourth week after the introduction of the metro line. This empirical evidence supports the notion that after the introduction of a new metro line, passengers initially rely on descriptive travel information to estimate travel times for new alternatives. After a few weeks, they begin to incorporate their own experiences to update their perceptions.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"145 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experiential learning-based transit route choice model using large-scale smart-card data\",\"authors\":\"Jacqueline Arriagada, C. Angelo Guevara, Marcela Munizaga, Song Gao\",\"doi\":\"10.1007/s11116-024-10465-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Taking learning into account when modelling passengers’ route choice behaviour improves understanding and forecasting of their preferences, which helps stakeholders better design public transport systems to meet user needs. Most empirical studies have neglected the relationship between current choices and passengers’ past experiences that lead to a learning process about route attributes. This study addresses this gap by using real observed choices from smart-card data to implement a route choice model that takes into account the learning process of passengers during the inauguration of a new metro line in Santiago, Chile. An instance-based learning (IBL) model is used to represent individually perceived in-vehicle travel time in the route choice model. It accounts for recency and reinforcement of experience using the power law of forgetting. The empirical evaluation uses 8 weeks of smart-card data after the introduction of the metro line. Model parameters are evaluated, and the fit and behavioural coherence achieved by the IBL route choice model is measured against a baseline model. The baseline model neglects passenger learning from experience and assumes that all passengers use only trip descriptive information in their decision-making process. The IBL route choice model outperforms the baseline model from the fourth week after the introduction of the metro line. This empirical evidence supports the notion that after the introduction of a new metro line, passengers initially rely on descriptive travel information to estimate travel times for new alternatives. After a few weeks, they begin to incorporate their own experiences to update their perceptions.</p>\",\"PeriodicalId\":49419,\"journal\":{\"name\":\"Transportation\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11116-024-10465-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-024-10465-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An experiential learning-based transit route choice model using large-scale smart-card data
Taking learning into account when modelling passengers’ route choice behaviour improves understanding and forecasting of their preferences, which helps stakeholders better design public transport systems to meet user needs. Most empirical studies have neglected the relationship between current choices and passengers’ past experiences that lead to a learning process about route attributes. This study addresses this gap by using real observed choices from smart-card data to implement a route choice model that takes into account the learning process of passengers during the inauguration of a new metro line in Santiago, Chile. An instance-based learning (IBL) model is used to represent individually perceived in-vehicle travel time in the route choice model. It accounts for recency and reinforcement of experience using the power law of forgetting. The empirical evaluation uses 8 weeks of smart-card data after the introduction of the metro line. Model parameters are evaluated, and the fit and behavioural coherence achieved by the IBL route choice model is measured against a baseline model. The baseline model neglects passenger learning from experience and assumes that all passengers use only trip descriptive information in their decision-making process. The IBL route choice model outperforms the baseline model from the fourth week after the introduction of the metro line. This empirical evidence supports the notion that after the introduction of a new metro line, passengers initially rely on descriptive travel information to estimate travel times for new alternatives. After a few weeks, they begin to incorporate their own experiences to update their perceptions.
期刊介绍:
In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world.
These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.