{"title":"DP-GCN:在真实世界网络上通过连接性和局部拓扑结构进行节点分类","authors":"Zhe Chen, Aixin Sun","doi":"10.1145/3649460","DOIUrl":null,"url":null,"abstract":"<p>Node classification is to predict the class label of a node by analyzing its properties and interactions in a network. We note that many existing solutions for graph-based node classification only consider node connectivity but not node’s local topology structure. However, nodes residing in different parts of a real-world network may share similar local topology structures. For example, local topology structures in a payment network may reveal sellers’ business roles (<i>e.g.,</i> supplier or retailer). To model both connectivity and local topology structure for better node classification performance, we present DP-GCN, a dual-path graph convolution network. DP-GCN consists of three main modules: (i) a C-GCN module to capture the connectivity relationships between nodes, (ii) a T-GCN module to capture the topology structure similarity among nodes, and (iii) a multi-head self-attention module to align both properties. We evaluate DP-GCN on seven benchmark datasets against diverse baselines to demonstrate its effectiveness. We also provide a case study of running DP-GCN on three large-scale payment networks from PayPal, a leading payment service provider, for risky seller detection. Experimental results show DP-GCN’s effectiveness and practicability in large-scale settings. PayPal’s internal testing also show DP-GCN’s effectiveness in defending real risks from transaction networks.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"6 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DP-GCN: Node Classification by Connectivity and Local Topology Structure on Real-World Network\",\"authors\":\"Zhe Chen, Aixin Sun\",\"doi\":\"10.1145/3649460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Node classification is to predict the class label of a node by analyzing its properties and interactions in a network. We note that many existing solutions for graph-based node classification only consider node connectivity but not node’s local topology structure. However, nodes residing in different parts of a real-world network may share similar local topology structures. For example, local topology structures in a payment network may reveal sellers’ business roles (<i>e.g.,</i> supplier or retailer). To model both connectivity and local topology structure for better node classification performance, we present DP-GCN, a dual-path graph convolution network. DP-GCN consists of three main modules: (i) a C-GCN module to capture the connectivity relationships between nodes, (ii) a T-GCN module to capture the topology structure similarity among nodes, and (iii) a multi-head self-attention module to align both properties. We evaluate DP-GCN on seven benchmark datasets against diverse baselines to demonstrate its effectiveness. We also provide a case study of running DP-GCN on three large-scale payment networks from PayPal, a leading payment service provider, for risky seller detection. Experimental results show DP-GCN’s effectiveness and practicability in large-scale settings. PayPal’s internal testing also show DP-GCN’s effectiveness in defending real risks from transaction networks.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649460\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649460","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DP-GCN: Node Classification by Connectivity and Local Topology Structure on Real-World Network
Node classification is to predict the class label of a node by analyzing its properties and interactions in a network. We note that many existing solutions for graph-based node classification only consider node connectivity but not node’s local topology structure. However, nodes residing in different parts of a real-world network may share similar local topology structures. For example, local topology structures in a payment network may reveal sellers’ business roles (e.g., supplier or retailer). To model both connectivity and local topology structure for better node classification performance, we present DP-GCN, a dual-path graph convolution network. DP-GCN consists of three main modules: (i) a C-GCN module to capture the connectivity relationships between nodes, (ii) a T-GCN module to capture the topology structure similarity among nodes, and (iii) a multi-head self-attention module to align both properties. We evaluate DP-GCN on seven benchmark datasets against diverse baselines to demonstrate its effectiveness. We also provide a case study of running DP-GCN on three large-scale payment networks from PayPal, a leading payment service provider, for risky seller detection. Experimental results show DP-GCN’s effectiveness and practicability in large-scale settings. PayPal’s internal testing also show DP-GCN’s effectiveness in defending real risks from transaction networks.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.