重氮异构体与 OH 自由基反应的机理和动力学理论研究

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL
Seyyed Rasoul Hashemi, Jeffrey Koopman, Gunnar Nyman
{"title":"重氮异构体与 OH 自由基反应的机理和动力学理论研究","authors":"Seyyed Rasoul Hashemi,&nbsp;Jeffrey Koopman,&nbsp;Gunnar Nyman","doi":"10.1002/kin.21711","DOIUrl":null,"url":null,"abstract":"<p>The reactions of pyrazine, pyridazine, and pyrimidine with hydroxyl radicals are theoretically studied. The barrier heights obtained with different electronic structure methods indicate that the reactions can competitively proceed via either abstraction of a hydrogen atom by an OH radical or OH addition to carbon sites. However, the rate constants computed within the temperature range 200 to 1500 K suggest that tunneling play a role resulting in large branching ratios in favor of hydrogen abstraction channels at lower temperatures.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21711","citationCount":"0","resultStr":"{\"title\":\"A theoretical study on the mechanism and kinetics of the reactions between diazine isomers and OH radicals\",\"authors\":\"Seyyed Rasoul Hashemi,&nbsp;Jeffrey Koopman,&nbsp;Gunnar Nyman\",\"doi\":\"10.1002/kin.21711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reactions of pyrazine, pyridazine, and pyrimidine with hydroxyl radicals are theoretically studied. The barrier heights obtained with different electronic structure methods indicate that the reactions can competitively proceed via either abstraction of a hydrogen atom by an OH radical or OH addition to carbon sites. However, the rate constants computed within the temperature range 200 to 1500 K suggest that tunneling play a role resulting in large branching ratios in favor of hydrogen abstraction channels at lower temperatures.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21711\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21711\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21711","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

理论研究了吡嗪、哒嗪和嘧啶与羟基自由基的反应。用不同的电子结构方法得到的势垒高度表明,这些反应可以通过羟自由基抽取氢原子或羟自由基加到碳位点的方式竞争性地进行。然而,在 200 至 1500 K 的温度范围内计算得出的速率常数表明,隧道效应起了一定作用,从而导致在较低温度下有利于氢抽取通道的大分支比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A theoretical study on the mechanism and kinetics of the reactions between diazine isomers and OH radicals

A theoretical study on the mechanism and kinetics of the reactions between diazine isomers and OH radicals

The reactions of pyrazine, pyridazine, and pyrimidine with hydroxyl radicals are theoretically studied. The barrier heights obtained with different electronic structure methods indicate that the reactions can competitively proceed via either abstraction of a hydrogen atom by an OH radical or OH addition to carbon sites. However, the rate constants computed within the temperature range 200 to 1500 K suggest that tunneling play a role resulting in large branching ratios in favor of hydrogen abstraction channels at lower temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信