Klaudia Borbényi-Galambos , Ágnes Czikora , Katalin Erdélyi , Péter Nagy
{"title":"半胱氨酸过硫化物在肿瘤生物学中的多种作用","authors":"Klaudia Borbényi-Galambos , Ágnes Czikora , Katalin Erdélyi , Péter Nagy","doi":"10.1016/j.cbpa.2024.102440","DOIUrl":null,"url":null,"abstract":"<div><p>Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H<sub>2</sub>S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102440"},"PeriodicalIF":6.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000164/pdfft?md5=3c46007593e2d31bcda95f3e17c0e639&pid=1-s2.0-S1367593124000164-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Versatile roles of cysteine persulfides in tumor biology\",\"authors\":\"Klaudia Borbényi-Galambos , Ágnes Czikora , Katalin Erdélyi , Péter Nagy\",\"doi\":\"10.1016/j.cbpa.2024.102440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H<sub>2</sub>S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"79 \",\"pages\":\"Article 102440\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000164/pdfft?md5=3c46007593e2d31bcda95f3e17c0e639&pid=1-s2.0-S1367593124000164-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000164\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000164","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Versatile roles of cysteine persulfides in tumor biology
Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.