Aswin M R, Akshay Pavithran, Yash Mangrole, Shriya Shivaraman, Chinmay Sanjay Kulaye, Amit Kumar Thakur, Balaji R
{"title":"用于卫星推进的电阻喷射推进器的比较分析和部件选择","authors":"Aswin M R, Akshay Pavithran, Yash Mangrole, Shriya Shivaraman, Chinmay Sanjay Kulaye, Amit Kumar Thakur, Balaji R","doi":"10.1016/j.jsse.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Resistojet is a thruster<span> based on electrothermal propulsion which uses heating element to increase the temperature of the thruster, so the propellant ionizes and gives out thrust at the nozzle section. Given their high propulsive performance, resistojets are widely used in satellite technology for control, tangential orbit modification, and propulsion. Therefore, numerous experimental and numerical research was carried out to comprehend the performance of a resistojet. The four major elements of a resistojet thruster are the material for the heating element, the cooling system, the type of nozzle and the choice of propellant. The combination of these four major elements matters greatly to design an efficient resistojet thruster. The main objective here is to compare and analyze the existing high performance resistojet thrusters. Therefore, it is critical to comprehend how well the four major elements of a resistojet thruster perform under different conditions. A resistojets’ performance is greatly affected by the design of the thruster. The right choice of propellant plays an important role with respect to the performance of a resistojet thruster. Every propellant type used up to this point has been thoroughly analyzed with respect to its effect on the resistojets’ thrust and specific impulse values. Parallelly, several cooling system and flow channel designs were examined to a great extent keeping the metrics of a resistojet in mind. A thruster's nozzle is a part that enables hot gases to escape at a higher velocity. Hence, version of nozzle types was studied, and their performances are charted in this paper. In addition to the performance characteristics, future aspects of the resistojet in </span></span>electric propulsion has been discussed.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analytical analysis and component selection of resistojet thruster for satellite propulsion\",\"authors\":\"Aswin M R, Akshay Pavithran, Yash Mangrole, Shriya Shivaraman, Chinmay Sanjay Kulaye, Amit Kumar Thakur, Balaji R\",\"doi\":\"10.1016/j.jsse.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Resistojet is a thruster<span> based on electrothermal propulsion which uses heating element to increase the temperature of the thruster, so the propellant ionizes and gives out thrust at the nozzle section. Given their high propulsive performance, resistojets are widely used in satellite technology for control, tangential orbit modification, and propulsion. Therefore, numerous experimental and numerical research was carried out to comprehend the performance of a resistojet. The four major elements of a resistojet thruster are the material for the heating element, the cooling system, the type of nozzle and the choice of propellant. The combination of these four major elements matters greatly to design an efficient resistojet thruster. The main objective here is to compare and analyze the existing high performance resistojet thrusters. Therefore, it is critical to comprehend how well the four major elements of a resistojet thruster perform under different conditions. A resistojets’ performance is greatly affected by the design of the thruster. The right choice of propellant plays an important role with respect to the performance of a resistojet thruster. Every propellant type used up to this point has been thoroughly analyzed with respect to its effect on the resistojets’ thrust and specific impulse values. Parallelly, several cooling system and flow channel designs were examined to a great extent keeping the metrics of a resistojet in mind. A thruster's nozzle is a part that enables hot gases to escape at a higher velocity. Hence, version of nozzle types was studied, and their performances are charted in this paper. In addition to the performance characteristics, future aspects of the resistojet in </span></span>electric propulsion has been discussed.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896724000028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724000028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative analytical analysis and component selection of resistojet thruster for satellite propulsion
Resistojet is a thruster based on electrothermal propulsion which uses heating element to increase the temperature of the thruster, so the propellant ionizes and gives out thrust at the nozzle section. Given their high propulsive performance, resistojets are widely used in satellite technology for control, tangential orbit modification, and propulsion. Therefore, numerous experimental and numerical research was carried out to comprehend the performance of a resistojet. The four major elements of a resistojet thruster are the material for the heating element, the cooling system, the type of nozzle and the choice of propellant. The combination of these four major elements matters greatly to design an efficient resistojet thruster. The main objective here is to compare and analyze the existing high performance resistojet thrusters. Therefore, it is critical to comprehend how well the four major elements of a resistojet thruster perform under different conditions. A resistojets’ performance is greatly affected by the design of the thruster. The right choice of propellant plays an important role with respect to the performance of a resistojet thruster. Every propellant type used up to this point has been thoroughly analyzed with respect to its effect on the resistojets’ thrust and specific impulse values. Parallelly, several cooling system and flow channel designs were examined to a great extent keeping the metrics of a resistojet in mind. A thruster's nozzle is a part that enables hot gases to escape at a higher velocity. Hence, version of nozzle types was studied, and their performances are charted in this paper. In addition to the performance characteristics, future aspects of the resistojet in electric propulsion has been discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.