Marco Behrendt , Meng-Ze Lyu , Yi Luo , Jian-Bing Chen , Michael Beer
{"title":"利用依频率建模和采样的松弛功率谱密度函数估算动态系统的故障概率","authors":"Marco Behrendt , Meng-Ze Lyu , Yi Luo , Jian-Bing Chen , Michael Beer","doi":"10.1016/j.probengmech.2024.103592","DOIUrl":null,"url":null,"abstract":"<div><p>This work addresses the critical task of accurately estimating failure probabilities in dynamic systems by utilizing a probabilistic load model based on a set of data with similar characteristics, namely the relaxed power spectral density (PSD) function. A major drawback of the relaxed PSD function is the lack of dependency between frequencies, which leads to unrealistic PSD functions being sampled, resulting in an unfavorable effect on the failure probability estimation. In this work, this limitation is addressed by various methods of modeling the dependency, including the incorporation of statistical quantities such as the correlation present in the data set. Specifically, a novel technique is proposed, incorporating probabilistic dependencies between different frequencies for sampling representative PSD functions, thereby enhancing the realism of load representation. By accounting for the dependencies between frequencies, the relaxed PSD function enhances the precision of failure probability estimates, opening the opportunity for a more robust and accurate reliability assessment under uncertainty. The effectiveness and accuracy of the proposed approach is demonstrated through numerical examples, showcasing its ability to provide reliable failure probability estimates in dynamic systems.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103592"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure probability estimation of dynamic systems employing relaxed power spectral density functions with dependent frequency modeling and sampling\",\"authors\":\"Marco Behrendt , Meng-Ze Lyu , Yi Luo , Jian-Bing Chen , Michael Beer\",\"doi\":\"10.1016/j.probengmech.2024.103592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work addresses the critical task of accurately estimating failure probabilities in dynamic systems by utilizing a probabilistic load model based on a set of data with similar characteristics, namely the relaxed power spectral density (PSD) function. A major drawback of the relaxed PSD function is the lack of dependency between frequencies, which leads to unrealistic PSD functions being sampled, resulting in an unfavorable effect on the failure probability estimation. In this work, this limitation is addressed by various methods of modeling the dependency, including the incorporation of statistical quantities such as the correlation present in the data set. Specifically, a novel technique is proposed, incorporating probabilistic dependencies between different frequencies for sampling representative PSD functions, thereby enhancing the realism of load representation. By accounting for the dependencies between frequencies, the relaxed PSD function enhances the precision of failure probability estimates, opening the opportunity for a more robust and accurate reliability assessment under uncertainty. The effectiveness and accuracy of the proposed approach is demonstrated through numerical examples, showcasing its ability to provide reliable failure probability estimates in dynamic systems.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"75 \",\"pages\":\"Article 103592\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000146\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Failure probability estimation of dynamic systems employing relaxed power spectral density functions with dependent frequency modeling and sampling
This work addresses the critical task of accurately estimating failure probabilities in dynamic systems by utilizing a probabilistic load model based on a set of data with similar characteristics, namely the relaxed power spectral density (PSD) function. A major drawback of the relaxed PSD function is the lack of dependency between frequencies, which leads to unrealistic PSD functions being sampled, resulting in an unfavorable effect on the failure probability estimation. In this work, this limitation is addressed by various methods of modeling the dependency, including the incorporation of statistical quantities such as the correlation present in the data set. Specifically, a novel technique is proposed, incorporating probabilistic dependencies between different frequencies for sampling representative PSD functions, thereby enhancing the realism of load representation. By accounting for the dependencies between frequencies, the relaxed PSD function enhances the precision of failure probability estimates, opening the opportunity for a more robust and accurate reliability assessment under uncertainty. The effectiveness and accuracy of the proposed approach is demonstrated through numerical examples, showcasing its ability to provide reliable failure probability estimates in dynamic systems.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.