基于阈值峰值法的机场管制员绩效风险评估概率模型

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Lili Zu , Yijie Lu , Min Dong
{"title":"基于阈值峰值法的机场管制员绩效风险评估概率模型","authors":"Lili Zu ,&nbsp;Yijie Lu ,&nbsp;Min Dong","doi":"10.1016/j.jnlssr.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Airport tower control plays an instrumental role in ensuring airport safety. However, obtaining objective, quantitative safety evaluations is challenging due to the unavailability of pertinent human operation data. This study introduces a probabilistic model that combines aircraft dynamics and the peak-over-threshold (POT) approach to assess the safety performance of airport controllers. We applied the POT approach to model reaction times extracted from a radiotelephony dataset via a voice event detection algorithm. The model couples the risks of tower control and aircraft operation to analyze the influence of human factors. Using data from radiotelephony communications and the Base of Aircraft Data (BADA) database, we compared risk levels across scenarios. Our findings revealed heightened airport control risks under low demand (0.374) compared to typical conditions (0.197). Furthermore, the risks associated with coupling under low demand exceeded those under typical demand, with the final approach stage presenting the highest risk (<span><math><mrow><mn>4.929</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span>). Our model underscores the significance of human factors and the implications of mental disconnects between pilots and controllers for safety risks. Collectively, these consistent findings affirm the reliability of our probabilistic model as an evaluative tool for evaluating the safety performance of airport tower controllers. The results also illuminate the path toward quantitative real-time safety evaluations for airport controllers within the industry. We recommend that airport regulators focus on the performance of airport controllers, particularly during the final approach stage.</p></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666449624000057/pdfft?md5=9d6786b81f15945e52ed0553f0807e58&pid=1-s2.0-S2666449624000057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A probabilistic model based on the peak-over-threshold approach for risk assessment of airport controllers' performance\",\"authors\":\"Lili Zu ,&nbsp;Yijie Lu ,&nbsp;Min Dong\",\"doi\":\"10.1016/j.jnlssr.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Airport tower control plays an instrumental role in ensuring airport safety. However, obtaining objective, quantitative safety evaluations is challenging due to the unavailability of pertinent human operation data. This study introduces a probabilistic model that combines aircraft dynamics and the peak-over-threshold (POT) approach to assess the safety performance of airport controllers. We applied the POT approach to model reaction times extracted from a radiotelephony dataset via a voice event detection algorithm. The model couples the risks of tower control and aircraft operation to analyze the influence of human factors. Using data from radiotelephony communications and the Base of Aircraft Data (BADA) database, we compared risk levels across scenarios. Our findings revealed heightened airport control risks under low demand (0.374) compared to typical conditions (0.197). Furthermore, the risks associated with coupling under low demand exceeded those under typical demand, with the final approach stage presenting the highest risk (<span><math><mrow><mn>4.929</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span>). Our model underscores the significance of human factors and the implications of mental disconnects between pilots and controllers for safety risks. Collectively, these consistent findings affirm the reliability of our probabilistic model as an evaluative tool for evaluating the safety performance of airport tower controllers. The results also illuminate the path toward quantitative real-time safety evaluations for airport controllers within the industry. We recommend that airport regulators focus on the performance of airport controllers, particularly during the final approach stage.</p></div>\",\"PeriodicalId\":62710,\"journal\":{\"name\":\"安全科学与韧性(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666449624000057/pdfft?md5=9d6786b81f15945e52ed0553f0807e58&pid=1-s2.0-S2666449624000057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"安全科学与韧性(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666449624000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

机场塔台控制在确保机场安全方面发挥着重要作用。然而,由于无法获得相关的人类操作数据,因此获得客观、定量的安全评估具有挑战性。本研究引入了一个概率模型,该模型结合了飞机动力学和阈值峰值(POT)方法,用于评估机场管制员的安全性能。我们将 POT 方法应用于通过语音事件检测算法从无线电话数据集中提取的反应时间建模。该模型将塔台控制和飞机操作的风险结合起来,分析人为因素的影响。利用无线电通话通信数据和飞机数据基础 (BADA) 数据库,我们比较了各种情况下的风险水平。我们的研究结果表明,在低需求(0.374)与典型条件(0.197)相比,机场控制风险更高。此外,低需求下与耦合相关的风险超过了典型需求下的风险,其中最后进近阶段的风险最高(4.929×10-7)。我们的模型强调了人为因素的重要性,以及飞行员和管制员之间心理脱节对安全风险的影响。总之,这些一致的研究结果肯定了我们的概率模型作为机场塔台管制员安全绩效评估工具的可靠性。这些结果也为行业内对机场管制员进行量化实时安全评估指明了道路。我们建议机场监管机构关注机场管制员的表现,尤其是在最后进近阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic model based on the peak-over-threshold approach for risk assessment of airport controllers' performance

Airport tower control plays an instrumental role in ensuring airport safety. However, obtaining objective, quantitative safety evaluations is challenging due to the unavailability of pertinent human operation data. This study introduces a probabilistic model that combines aircraft dynamics and the peak-over-threshold (POT) approach to assess the safety performance of airport controllers. We applied the POT approach to model reaction times extracted from a radiotelephony dataset via a voice event detection algorithm. The model couples the risks of tower control and aircraft operation to analyze the influence of human factors. Using data from radiotelephony communications and the Base of Aircraft Data (BADA) database, we compared risk levels across scenarios. Our findings revealed heightened airport control risks under low demand (0.374) compared to typical conditions (0.197). Furthermore, the risks associated with coupling under low demand exceeded those under typical demand, with the final approach stage presenting the highest risk (4.929×107). Our model underscores the significance of human factors and the implications of mental disconnects between pilots and controllers for safety risks. Collectively, these consistent findings affirm the reliability of our probabilistic model as an evaluative tool for evaluating the safety performance of airport tower controllers. The results also illuminate the path toward quantitative real-time safety evaluations for airport controllers within the industry. We recommend that airport regulators focus on the performance of airport controllers, particularly during the final approach stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信