利用殷勤的量子回归时空卷积网络为综合能源系统进行概率负荷预测

IF 13 Q1 ENERGY & FUELS
Han Guo, Bin Huang, Jianhui Wang
{"title":"利用殷勤的量子回归时空卷积网络为综合能源系统进行概率负荷预测","authors":"Han Guo,&nbsp;Bin Huang,&nbsp;Jianhui Wang","doi":"10.1016/j.adapen.2024.100165","DOIUrl":null,"url":null,"abstract":"<div><p>The burgeoning proliferation of integrated energy systems has fostered an unprecedented degree of coupling among various energy streams, thereby elevating the necessity for unified multi-energy forecasting (MEF). Prior approaches predominantly relied on independent predictions for heterogeneous load demands, overlooking the synergy embedded within the dataset. The two principal challenges in MEF are extracting the intricate coupling correlations among diverse loads and accurately capturing the inherent uncertainties associated with each type of load. This study proposes an attentive quantile regression temporal convolutional network (QTCN) as a probabilistic framework for MEF, featuring an end-to-end predictor for the probabilistic intervals of electrical, thermal, and cooling loads. This study leverages an attention layer to extract correlations between diverse loads. Subsequently, a QTCN is implemented to retain the temporal characteristics of load data and gauge the uncertainties and temporal correlations of each load type. The multi-task learning framework is deployed to facilitate simultaneous regression of various quantiles, thereby expediting the training progression of the forecasting model. The proposed model is validated using realistic load data and meteorological data from the Arizona State University metabolic system and National Oceanic and Atmospheric Administration respectively, and the results indicate superior performance and greater economic benefits compared to the baselines in existing literature.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"14 ","pages":"Article 100165"},"PeriodicalIF":13.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000039/pdfft?md5=b54e77f93d7199836be85cd37c0a9d2f&pid=1-s2.0-S2666792424000039-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Probabilistic load forecasting for integrated energy systems using attentive quantile regression temporal convolutional network\",\"authors\":\"Han Guo,&nbsp;Bin Huang,&nbsp;Jianhui Wang\",\"doi\":\"10.1016/j.adapen.2024.100165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The burgeoning proliferation of integrated energy systems has fostered an unprecedented degree of coupling among various energy streams, thereby elevating the necessity for unified multi-energy forecasting (MEF). Prior approaches predominantly relied on independent predictions for heterogeneous load demands, overlooking the synergy embedded within the dataset. The two principal challenges in MEF are extracting the intricate coupling correlations among diverse loads and accurately capturing the inherent uncertainties associated with each type of load. This study proposes an attentive quantile regression temporal convolutional network (QTCN) as a probabilistic framework for MEF, featuring an end-to-end predictor for the probabilistic intervals of electrical, thermal, and cooling loads. This study leverages an attention layer to extract correlations between diverse loads. Subsequently, a QTCN is implemented to retain the temporal characteristics of load data and gauge the uncertainties and temporal correlations of each load type. The multi-task learning framework is deployed to facilitate simultaneous regression of various quantiles, thereby expediting the training progression of the forecasting model. The proposed model is validated using realistic load data and meteorological data from the Arizona State University metabolic system and National Oceanic and Atmospheric Administration respectively, and the results indicate superior performance and greater economic benefits compared to the baselines in existing literature.</p></div>\",\"PeriodicalId\":34615,\"journal\":{\"name\":\"Advances in Applied Energy\",\"volume\":\"14 \",\"pages\":\"Article 100165\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666792424000039/pdfft?md5=b54e77f93d7199836be85cd37c0a9d2f&pid=1-s2.0-S2666792424000039-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666792424000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

综合能源系统的蓬勃发展促进了各种能源流之间前所未有的耦合程度,从而提升了统一多能源预测(MEF)的必要性。之前的方法主要依赖于对异质负荷需求的独立预测,忽略了数据集中蕴含的协同作用。MEF 面临的两大挑战是提取不同负荷之间错综复杂的耦合相关性,以及准确捕捉与各类负荷相关的固有不确定性。本研究提出了一种注意力量化回归时序卷积网络(QTCN),作为 MEF 的概率框架,其特点是为电力、热力和冷却负载的概率区间提供端到端预测器。本研究利用注意力层提取不同负载之间的相关性。随后,实施了一个 QTCN,以保留负载数据的时间特性,并衡量每种负载类型的不确定性和时间相关性。多任务学习框架的部署有助于同时对各种量化数据进行回归,从而加快预测模型的训练进度。利用亚利桑那州立大学新陈代谢系统和美国国家海洋和大气管理局分别提供的现实负荷数据和气象数据,对所提出的模型进行了验证,结果表明,与现有文献中的基准相比,该模型具有更优越的性能和更大的经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probabilistic load forecasting for integrated energy systems using attentive quantile regression temporal convolutional network

Probabilistic load forecasting for integrated energy systems using attentive quantile regression temporal convolutional network

The burgeoning proliferation of integrated energy systems has fostered an unprecedented degree of coupling among various energy streams, thereby elevating the necessity for unified multi-energy forecasting (MEF). Prior approaches predominantly relied on independent predictions for heterogeneous load demands, overlooking the synergy embedded within the dataset. The two principal challenges in MEF are extracting the intricate coupling correlations among diverse loads and accurately capturing the inherent uncertainties associated with each type of load. This study proposes an attentive quantile regression temporal convolutional network (QTCN) as a probabilistic framework for MEF, featuring an end-to-end predictor for the probabilistic intervals of electrical, thermal, and cooling loads. This study leverages an attention layer to extract correlations between diverse loads. Subsequently, a QTCN is implemented to retain the temporal characteristics of load data and gauge the uncertainties and temporal correlations of each load type. The multi-task learning framework is deployed to facilitate simultaneous regression of various quantiles, thereby expediting the training progression of the forecasting model. The proposed model is validated using realistic load data and meteorological data from the Arizona State University metabolic system and National Oceanic and Atmospheric Administration respectively, and the results indicate superior performance and greater economic benefits compared to the baselines in existing literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信