阐明-OH含量对反超晶固体电解质相变和锂离子传输的影响

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Zunqiu Xiao , Huaying Wang , Ningyuan Cai , Yutong Li , Kejia Xiang , Wei Wei , Tao Ye , Zhongtai Zhang , Shitong Wang , Zilong Tang
{"title":"阐明-OH含量对反超晶固体电解质相变和锂离子传输的影响","authors":"Zunqiu Xiao ,&nbsp;Huaying Wang ,&nbsp;Ningyuan Cai ,&nbsp;Yutong Li ,&nbsp;Kejia Xiang ,&nbsp;Wei Wei ,&nbsp;Tao Ye ,&nbsp;Zhongtai Zhang ,&nbsp;Shitong Wang ,&nbsp;Zilong Tang","doi":"10.1016/j.elecom.2024.107684","DOIUrl":null,"url":null,"abstract":"<div><p>Anti-perovskite materials such as Li<sub>2</sub>(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li<sub>2</sub>(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li<sub>2</sub>(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO<sub>4</sub>, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000274/pdfft?md5=89ea848dda67b7e574e3808964152f37&pid=1-s2.0-S1388248124000274-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes\",\"authors\":\"Zunqiu Xiao ,&nbsp;Huaying Wang ,&nbsp;Ningyuan Cai ,&nbsp;Yutong Li ,&nbsp;Kejia Xiang ,&nbsp;Wei Wei ,&nbsp;Tao Ye ,&nbsp;Zhongtai Zhang ,&nbsp;Shitong Wang ,&nbsp;Zilong Tang\",\"doi\":\"10.1016/j.elecom.2024.107684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anti-perovskite materials such as Li<sub>2</sub>(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li<sub>2</sub>(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li<sub>2</sub>(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO<sub>4</sub>, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000274/pdfft?md5=89ea848dda67b7e574e3808964152f37&pid=1-s2.0-S1388248124000274-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000274\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000274","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

Li2(OH)Cl 等反超晶材料具有众多优点,因此作为固体电解质引起了广泛关注。然而,正交态 Li2(OH)Cl 在室温附近的离子电导率较低,这给其应用带来了巨大挑战。在本研究中,我们通过受控热处理工艺巧妙地调节了 Li2(OH)Cl 中的 -OH 含量。这种方法能有效增加立方相含量并降低相变温度,从而将 30 °C 时的离子导电率提高一个数量级以上。理论计算表明,去除 -OH 成分可显著降低相变障碍,从而大幅改变锂离子传输路径和迁移障碍。此外,LiHClO-600 还具有优异的抗锂还原性,并与金属锂和磷酸铁锂兼容,因此是一种可行的电池固态电解质。实验发现和理论计算都共同强调了-OH含量在驱动相变和促进反超晶固体电解质中锂离子迁移方面的关键作用,为其在全固态电池中的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes

Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes

Anti-perovskite materials such as Li2(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li2(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li2(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO4, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信