{"title":"满足几何赫米特插值条件的拉伸弹性体 s 曲线段的存在性和唯一性","authors":"Michael J. Johnson","doi":"10.1016/j.jat.2024.106017","DOIUrl":null,"url":null,"abstract":"<div><p>It has been recently proved that every <em>proper</em> restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, in the plane, along with corresponding unit directions <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> that satisfy <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> that connects <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with initial direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and terminal direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions\",\"authors\":\"Michael J. Johnson\",\"doi\":\"10.1016/j.jat.2024.106017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been recently proved that every <em>proper</em> restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, in the plane, along with corresponding unit directions <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> that satisfy <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> that connects <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with initial direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and terminal direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
最近有人证明,每一条适当的受限弹性样条曲线都是一条稳定的非线性样条曲线,这就为稳定的非线性样条曲线提供了一个广泛的存在性证明。当设置中包含张力时,张力下的稳定非线性样条曲线总是存在的,但它们并不总是具有每一段(连接一个插值点和下一个插值点)都是 s 曲线的特性。这一特性与插值曲线的公平性相关,因此是理想的。我们推测,在限制弹性样条曲线上成功应用的框架也能在张力下的非线性样条曲线上很好地发挥作用。我们的目的是证明以下基本结果:给定平面上的点 P1≠P2,以及满足 d1⋅(P2-P1)≥0 和 d2⋅(P2-P1)≥0 的相应单位方向 d1、d2,在张力 λ>0 下存在一条唯一的欧拉-伯努利弹性 s 曲线段,它以初始方向 d1 和终端方向 d2 连接 P1 和 P2。
Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions
It has been recently proved that every proper restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points , in the plane, along with corresponding unit directions that satisfy and , there exists a unique s-curve segment of Euler–Bernoulli elastica under tension that connects to with initial direction and terminal direction .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.