满足几何赫米特插值条件的拉伸弹性体 s 曲线段的存在性和唯一性

IF 0.9 3区 数学 Q2 MATHEMATICS
Michael J. Johnson
{"title":"满足几何赫米特插值条件的拉伸弹性体 s 曲线段的存在性和唯一性","authors":"Michael J. Johnson","doi":"10.1016/j.jat.2024.106017","DOIUrl":null,"url":null,"abstract":"<div><p>It has been recently proved that every <em>proper</em> restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, in the plane, along with corresponding unit directions <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> that satisfy <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> that connects <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with initial direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and terminal direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions\",\"authors\":\"Michael J. Johnson\",\"doi\":\"10.1016/j.jat.2024.106017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been recently proved that every <em>proper</em> restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, in the plane, along with corresponding unit directions <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> that satisfy <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> that connects <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with initial direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and terminal direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近有人证明,每一条适当的受限弹性样条曲线都是一条稳定的非线性样条曲线,这就为稳定的非线性样条曲线提供了一个广泛的存在性证明。当设置中包含张力时,张力下的稳定非线性样条曲线总是存在的,但它们并不总是具有每一段(连接一个插值点和下一个插值点)都是 s 曲线的特性。这一特性与插值曲线的公平性相关,因此是理想的。我们推测,在限制弹性样条曲线上成功应用的框架也能在张力下的非线性样条曲线上很好地发挥作用。我们的目的是证明以下基本结果:给定平面上的点 P1≠P2,以及满足 d1⋅(P2-P1)≥0 和 d2⋅(P2-P1)≥0 的相应单位方向 d1、d2,在张力 λ>0 下存在一条唯一的欧拉-伯努利弹性 s 曲线段,它以初始方向 d1 和终端方向 d2 连接 P1 和 P2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions

It has been recently proved that every proper restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points P1P2, in the plane, along with corresponding unit directions d1,d2 that satisfy d1(P2P1)0 and d2(P2P1)0, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension λ>0 that connects P1 to P2 with initial direction d1 and terminal direction d2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信