角膜冲洗对核黄素/UVA 角膜交联影响的体外研究。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Siân R Morgan, David P S O'Brart, Jinhai Huang, Keith M Meek, Sally Hayes
{"title":"角膜冲洗对核黄素/UVA 角膜交联影响的体外研究。","authors":"Siân R Morgan, David P S O'Brart, Jinhai Huang, Keith M Meek, Sally Hayes","doi":"10.1186/s40662-024-00375-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Corneal cross-linking (CXL) using riboflavin and ultraviolet-A light (UVA) is a treatment used to prevent progression of keratoconus. This ex vivo study assesses the impact on CXL effectiveness, as measured by tissue enzymatic resistance and confocal microscopy, of including a pre-UVA corneal surface rinse with balanced salt solution (BSS) as part of the epithelium-off treatment protocol.</p><p><strong>Methods: </strong>Sixty-eight porcine eyes, after epithelial debridement, were assigned to six groups in three experimental runs. Group 1 remained untreated. Groups 2-6 received a 16-min application of 0.1% riboflavin/Hydroxypropyl methylcellulose (HPMC) drops, after which Group 3 was exposed to 9 mW/cm<sup>2</sup> UVA for 10 min, and Groups 4-6 underwent corneal surface rinsing with 0.25 mL, 1 mL or 10 mL BSS followed by 9 mW/cm<sup>2</sup> UVA exposure for 10 min. Central corneal thickness (CCT) was recorded at each stage. Central 8.0 mm corneal buttons from all eyes were subjected to 0.3% collagenase digestion at 37 °C and the time required for complete digestion determined. A further 15 eyes underwent fluorescence confocal microscopy to assess the impact of rinsing on stromal riboflavin concentration.</p><p><strong>Results: </strong>Application of riboflavin/HPMC solution led to an increase in CCT of 73 ± 14 µm (P < 0.01) after 16 min. All CXL-treated corneas displayed a 2-4 fold greater resistance to collagenase digestion than non-irradiated corneas. There was no difference in resistance between corneas that received no BSS rinse and those that received a 0.25 mL or 1 mL pre-UVA rinse, but each showed a greater level of resistance than those that received a 10 mL pre-UVA rinse (P < 0.05). Confocal microscopy demonstrated reduced stromal riboflavin fluorescence after rinsing.</p><p><strong>Conclusions: </strong>All protocols, with and without rinsing, were effective at enhancing the resistance to collagenase digestion, although resistance was significantly decreased, and stromal riboflavin fluorescence reduced with a 10 mL rinse. This suggests that a 10 mL surface rinse can reduce the efficacy of CXL through the dilution of the stromal riboflavin concentration.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900838/pdf/","citationCount":"0","resultStr":"{\"title\":\"An in vitro investigation into the impact of corneal rinsing on riboflavin/UVA corneal cross-linking.\",\"authors\":\"Siân R Morgan, David P S O'Brart, Jinhai Huang, Keith M Meek, Sally Hayes\",\"doi\":\"10.1186/s40662-024-00375-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Corneal cross-linking (CXL) using riboflavin and ultraviolet-A light (UVA) is a treatment used to prevent progression of keratoconus. This ex vivo study assesses the impact on CXL effectiveness, as measured by tissue enzymatic resistance and confocal microscopy, of including a pre-UVA corneal surface rinse with balanced salt solution (BSS) as part of the epithelium-off treatment protocol.</p><p><strong>Methods: </strong>Sixty-eight porcine eyes, after epithelial debridement, were assigned to six groups in three experimental runs. Group 1 remained untreated. Groups 2-6 received a 16-min application of 0.1% riboflavin/Hydroxypropyl methylcellulose (HPMC) drops, after which Group 3 was exposed to 9 mW/cm<sup>2</sup> UVA for 10 min, and Groups 4-6 underwent corneal surface rinsing with 0.25 mL, 1 mL or 10 mL BSS followed by 9 mW/cm<sup>2</sup> UVA exposure for 10 min. Central corneal thickness (CCT) was recorded at each stage. Central 8.0 mm corneal buttons from all eyes were subjected to 0.3% collagenase digestion at 37 °C and the time required for complete digestion determined. A further 15 eyes underwent fluorescence confocal microscopy to assess the impact of rinsing on stromal riboflavin concentration.</p><p><strong>Results: </strong>Application of riboflavin/HPMC solution led to an increase in CCT of 73 ± 14 µm (P < 0.01) after 16 min. All CXL-treated corneas displayed a 2-4 fold greater resistance to collagenase digestion than non-irradiated corneas. There was no difference in resistance between corneas that received no BSS rinse and those that received a 0.25 mL or 1 mL pre-UVA rinse, but each showed a greater level of resistance than those that received a 10 mL pre-UVA rinse (P < 0.05). Confocal microscopy demonstrated reduced stromal riboflavin fluorescence after rinsing.</p><p><strong>Conclusions: </strong>All protocols, with and without rinsing, were effective at enhancing the resistance to collagenase digestion, although resistance was significantly decreased, and stromal riboflavin fluorescence reduced with a 10 mL rinse. This suggests that a 10 mL surface rinse can reduce the efficacy of CXL through the dilution of the stromal riboflavin concentration.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40662-024-00375-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00375-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:使用核黄素和紫外线-A 光(UVA)进行角膜交联(CXL)是一种用于防止角膜炎恶化的治疗方法。这项体外研究通过组织酶抗性和共聚焦显微镜测量,评估了作为上皮细胞脱落治疗方案的一部分,用平衡盐溶液(BSS)进行 UVA 前角膜表面冲洗对 CXL 效果的影响:在三次实验中,68 只猪眼睛在上皮剥离后被分配到六个组。第 1 组未经处理。第 2-6 组滴入 0.1% 核黄素/羟丙基甲基纤维素(HPMC)滴眼液 16 分钟,然后第 3 组接受 9 mW/cm2 UVA 照射 10 分钟,第 4-6 组分别用 0.25 mL、1 mL 或 10 mL BSS 冲洗角膜表面,然后接受 9 mW/cm2 UVA 照射 10 分钟。在每个阶段记录中心角膜厚度(CCT)。在 37 °C下对所有眼球中央 8.0 mm 的角膜扣进行 0.3% 胶原酶消化,并确定完全消化所需的时间。另外 15 只眼睛接受荧光共聚焦显微镜检查,以评估冲洗对基质核黄素浓度的影响:结果:使用核黄素/HPMC溶液可使CCT增加73 ± 14 µm(P 结论:核黄素/HPMC溶液可使CCT增加73 ± 14 µm(P):所有方案,无论是否冲洗,都能有效增强胶原酶消化的抵抗力,但抵抗力显著下降,基质核黄素荧光在冲洗 10 mL 后减少。这表明,10 毫升的表面冲洗会稀释基质核黄素浓度,从而降低 CXL 的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An in vitro investigation into the impact of corneal rinsing on riboflavin/UVA corneal cross-linking.

Background: Corneal cross-linking (CXL) using riboflavin and ultraviolet-A light (UVA) is a treatment used to prevent progression of keratoconus. This ex vivo study assesses the impact on CXL effectiveness, as measured by tissue enzymatic resistance and confocal microscopy, of including a pre-UVA corneal surface rinse with balanced salt solution (BSS) as part of the epithelium-off treatment protocol.

Methods: Sixty-eight porcine eyes, after epithelial debridement, were assigned to six groups in three experimental runs. Group 1 remained untreated. Groups 2-6 received a 16-min application of 0.1% riboflavin/Hydroxypropyl methylcellulose (HPMC) drops, after which Group 3 was exposed to 9 mW/cm2 UVA for 10 min, and Groups 4-6 underwent corneal surface rinsing with 0.25 mL, 1 mL or 10 mL BSS followed by 9 mW/cm2 UVA exposure for 10 min. Central corneal thickness (CCT) was recorded at each stage. Central 8.0 mm corneal buttons from all eyes were subjected to 0.3% collagenase digestion at 37 °C and the time required for complete digestion determined. A further 15 eyes underwent fluorescence confocal microscopy to assess the impact of rinsing on stromal riboflavin concentration.

Results: Application of riboflavin/HPMC solution led to an increase in CCT of 73 ± 14 µm (P < 0.01) after 16 min. All CXL-treated corneas displayed a 2-4 fold greater resistance to collagenase digestion than non-irradiated corneas. There was no difference in resistance between corneas that received no BSS rinse and those that received a 0.25 mL or 1 mL pre-UVA rinse, but each showed a greater level of resistance than those that received a 10 mL pre-UVA rinse (P < 0.05). Confocal microscopy demonstrated reduced stromal riboflavin fluorescence after rinsing.

Conclusions: All protocols, with and without rinsing, were effective at enhancing the resistance to collagenase digestion, although resistance was significantly decreased, and stromal riboflavin fluorescence reduced with a 10 mL rinse. This suggests that a 10 mL surface rinse can reduce the efficacy of CXL through the dilution of the stromal riboflavin concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信