开发苯酚-甲醛基复合材料的高压渗透工艺

IF 2.9 4区 化学 Q2 POLYMER SCIENCE
Samuel Weiler, Patrick Schwartzkopf, Henry Haffner, K Chandrashekhara
{"title":"开发苯酚-甲醛基复合材料的高压渗透工艺","authors":"Samuel Weiler,&nbsp;Patrick Schwartzkopf,&nbsp;Henry Haffner,&nbsp;K Chandrashekhara","doi":"10.1002/pi.6623","DOIUrl":null,"url":null,"abstract":"<p>Phenol–formaldehyde (phenolic) thermosets are known for excellent heat and chemical resistance, high flame retardance, and good mechanical performance. However, phenolics are also known for their high brittleness, and tendency to form voids, due to a condensation reaction forming water during curing. These voids can decrease the mechanical performance of the resultant phenolic composite and introduce undesirable performance characteristics. This work aims to develop a technique that uses high-pressure infiltration to obtain dense phenolic matrix composites, with commercially available resin and fiber reinforcement. The high-pressure system developed in this work is compared to a conventional low-pressure resin infusion technique, and the porosity after each infusion is analyzed. A model of the low- and high-pressure systems was developed, and the predicted time of infiltration was compared to the experimental results. The high-pressure system had 97% less open porosity after infusion than the low-pressure technique, suggesting that it can produce a higher-quality and better-performing phenolic composite than conventional techniques. Also, the mechanical test performed indicates improved performance for the high-pressure injection with a 30.73% increase in ultimate tensile strength in comparison to low pressure, indicating better mechanical performance. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 7","pages":"509-515"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a high-pressure infiltration process for phenol–formaldehyde matrix composites\",\"authors\":\"Samuel Weiler,&nbsp;Patrick Schwartzkopf,&nbsp;Henry Haffner,&nbsp;K Chandrashekhara\",\"doi\":\"10.1002/pi.6623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenol–formaldehyde (phenolic) thermosets are known for excellent heat and chemical resistance, high flame retardance, and good mechanical performance. However, phenolics are also known for their high brittleness, and tendency to form voids, due to a condensation reaction forming water during curing. These voids can decrease the mechanical performance of the resultant phenolic composite and introduce undesirable performance characteristics. This work aims to develop a technique that uses high-pressure infiltration to obtain dense phenolic matrix composites, with commercially available resin and fiber reinforcement. The high-pressure system developed in this work is compared to a conventional low-pressure resin infusion technique, and the porosity after each infusion is analyzed. A model of the low- and high-pressure systems was developed, and the predicted time of infiltration was compared to the experimental results. The high-pressure system had 97% less open porosity after infusion than the low-pressure technique, suggesting that it can produce a higher-quality and better-performing phenolic composite than conventional techniques. Also, the mechanical test performed indicates improved performance for the high-pressure injection with a 30.73% increase in ultimate tensile strength in comparison to low pressure, indicating better mechanical performance. © 2024 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 7\",\"pages\":\"509-515\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6623\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6623","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

酚醛热固性塑料以出色的耐热性和耐化学性、高阻燃性和良好的机械性能而著称。然而,酚醛也以其脆性高和容易形成空隙而著称,这是因为在固化过程中水会发生冷凝反应而形成空隙。这些空隙会降低酚醛复合材料的机械性能,并带来不良的性能特征。这项工作旨在开发一种技术,利用高压渗透技术获得致密的酚醛基复合材料,并使用市售的树脂和纤维增强材料。本研究开发的高压系统与传统的低压树脂灌注技术进行了比较,并分析了每次灌注后的孔隙率。建立了低压和高压系统的模型,并将预测的浸润时间与实验结果进行了比较。与低压技术相比,高压系统灌注后的开放气孔减少了 97%,这表明与传统技术相比,高压系统可以生产出质量更高、性能更好的酚醛复合材料。此外,所进行的机械测试表明,高压注射的性能有所提高,极限拉伸强度比低压注射提高了 30.73%,这表明高压注射具有更好的机械性能。本文受版权保护,保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a high-pressure infiltration process for phenol–formaldehyde matrix composites

Development of a high-pressure infiltration process for phenol–formaldehyde matrix composites

Phenol–formaldehyde (phenolic) thermosets are known for excellent heat and chemical resistance, high flame retardance, and good mechanical performance. However, phenolics are also known for their high brittleness, and tendency to form voids, due to a condensation reaction forming water during curing. These voids can decrease the mechanical performance of the resultant phenolic composite and introduce undesirable performance characteristics. This work aims to develop a technique that uses high-pressure infiltration to obtain dense phenolic matrix composites, with commercially available resin and fiber reinforcement. The high-pressure system developed in this work is compared to a conventional low-pressure resin infusion technique, and the porosity after each infusion is analyzed. A model of the low- and high-pressure systems was developed, and the predicted time of infiltration was compared to the experimental results. The high-pressure system had 97% less open porosity after infusion than the low-pressure technique, suggesting that it can produce a higher-quality and better-performing phenolic composite than conventional techniques. Also, the mechanical test performed indicates improved performance for the high-pressure injection with a 30.73% increase in ultimate tensile strength in comparison to low pressure, indicating better mechanical performance. © 2024 Society of Industrial Chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信