Yingxin Ma , Xuyun Guo , Mengmeng Du , Sailei Kang , Weiliang Dong , Valeria Nicolosi , Zhongli Cui , Yu Zhang , Bocheng Qiu
{"title":"超越生物降解:在温和条件下通过级联催化将聚乳酸塑料废弃物升级回收为氨基酸","authors":"Yingxin Ma , Xuyun Guo , Mengmeng Du , Sailei Kang , Weiliang Dong , Valeria Nicolosi , Zhongli Cui , Yu Zhang , Bocheng Qiu","doi":"10.1039/d3gc04460b","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable plastics, represented by polylactic acid (PLA), are considered suitable alternatives to non-degradable commodity plastics; however, their degradation through microbial decomposition is seen as a waste of carbon resources and inevitably brings about CO<sub>2</sub> emission. Alternatively, waste PLA plastics can be utilized as feedstocks for the sustainable production of value-added chemicals, which not only avoids a carbon footprint but also realizes upcycling of plastic waste. Here, we show a cascade system that combines alkali-induced depolymerization, pulsed electrooxidation, and electrochemical reductive amination to produce alanine with an overall yield of 69% under near ambient conditions. Specifically, we first implement an alkali catalyst in an aqueous solution to depolymerize PLA into lactate. The obtained PLA hydrolysate is directly utilized as both feedstock and electrolyte for pyruvate production over a nickel hydroxide-supported Pd electrocatalyst (Pd/Ni(OH)<sub>2</sub>) <em>via</em> a pulsed potential, which is followed by the transformation of pyruvate into alanine using a TiO<sub>2</sub> catalyst. This cascade process for alanine production benefits from high efficiencies maintained in three consecutive processes, mild operation conditions, and the use of cost-effective feedstocks (plastic wastes), without suffering harsh conditions and expensive feedstock consumption required by conventional biological and chemical approaches for alanine synthesis, respectively.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 7","pages":"Pages 3995-4004"},"PeriodicalIF":9.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond biodegradation: upcycling of polylactic acid plastic waste into amino acids via cascade catalysis under mild conditions†\",\"authors\":\"Yingxin Ma , Xuyun Guo , Mengmeng Du , Sailei Kang , Weiliang Dong , Valeria Nicolosi , Zhongli Cui , Yu Zhang , Bocheng Qiu\",\"doi\":\"10.1039/d3gc04460b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodegradable plastics, represented by polylactic acid (PLA), are considered suitable alternatives to non-degradable commodity plastics; however, their degradation through microbial decomposition is seen as a waste of carbon resources and inevitably brings about CO<sub>2</sub> emission. Alternatively, waste PLA plastics can be utilized as feedstocks for the sustainable production of value-added chemicals, which not only avoids a carbon footprint but also realizes upcycling of plastic waste. Here, we show a cascade system that combines alkali-induced depolymerization, pulsed electrooxidation, and electrochemical reductive amination to produce alanine with an overall yield of 69% under near ambient conditions. Specifically, we first implement an alkali catalyst in an aqueous solution to depolymerize PLA into lactate. The obtained PLA hydrolysate is directly utilized as both feedstock and electrolyte for pyruvate production over a nickel hydroxide-supported Pd electrocatalyst (Pd/Ni(OH)<sub>2</sub>) <em>via</em> a pulsed potential, which is followed by the transformation of pyruvate into alanine using a TiO<sub>2</sub> catalyst. This cascade process for alanine production benefits from high efficiencies maintained in three consecutive processes, mild operation conditions, and the use of cost-effective feedstocks (plastic wastes), without suffering harsh conditions and expensive feedstock consumption required by conventional biological and chemical approaches for alanine synthesis, respectively.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"26 7\",\"pages\":\"Pages 3995-4004\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224002851\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224002851","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Beyond biodegradation: upcycling of polylactic acid plastic waste into amino acids via cascade catalysis under mild conditions†
Biodegradable plastics, represented by polylactic acid (PLA), are considered suitable alternatives to non-degradable commodity plastics; however, their degradation through microbial decomposition is seen as a waste of carbon resources and inevitably brings about CO2 emission. Alternatively, waste PLA plastics can be utilized as feedstocks for the sustainable production of value-added chemicals, which not only avoids a carbon footprint but also realizes upcycling of plastic waste. Here, we show a cascade system that combines alkali-induced depolymerization, pulsed electrooxidation, and electrochemical reductive amination to produce alanine with an overall yield of 69% under near ambient conditions. Specifically, we first implement an alkali catalyst in an aqueous solution to depolymerize PLA into lactate. The obtained PLA hydrolysate is directly utilized as both feedstock and electrolyte for pyruvate production over a nickel hydroxide-supported Pd electrocatalyst (Pd/Ni(OH)2) via a pulsed potential, which is followed by the transformation of pyruvate into alanine using a TiO2 catalyst. This cascade process for alanine production benefits from high efficiencies maintained in three consecutive processes, mild operation conditions, and the use of cost-effective feedstocks (plastic wastes), without suffering harsh conditions and expensive feedstock consumption required by conventional biological and chemical approaches for alanine synthesis, respectively.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.