Bochner-Lebesgue 空间中的黎曼-刘维尔分数积分 II

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Bochner-Lebesgue 空间中的黎曼-刘维尔分数积分 II","authors":"","doi":"10.1007/s13540-024-00255-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work we study the Riemann-Liouville fractional integral of order <span> <span>\\(\\alpha \\in (0,1/p)\\)</span> </span> as an operator from <span> <span>\\(L^p(I;X)\\)</span> </span> into <span> <span>\\(L^{q}(I;X)\\)</span> </span>, with <span> <span>\\(1\\le q\\le p/(1-p\\alpha )\\)</span> </span>, whether <span> <span>\\(I=[t_0,t_1]\\)</span> </span> or <span> <span>\\(I=[t_0,\\infty )\\)</span> </span> and <em>X</em> is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from <span> <span>\\(L^p(t_0,t_1;X)\\)</span> </span> into <span> <span>\\(L^{q}(t_0,t_1;X)\\)</span> </span>, when <span> <span>\\(1\\le q&lt; p/(1-p\\alpha )\\)</span> </span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00255-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this work we study the Riemann-Liouville fractional integral of order <span> <span>\\\\(\\\\alpha \\\\in (0,1/p)\\\\)</span> </span> as an operator from <span> <span>\\\\(L^p(I;X)\\\\)</span> </span> into <span> <span>\\\\(L^{q}(I;X)\\\\)</span> </span>, with <span> <span>\\\\(1\\\\le q\\\\le p/(1-p\\\\alpha )\\\\)</span> </span>, whether <span> <span>\\\\(I=[t_0,t_1]\\\\)</span> </span> or <span> <span>\\\\(I=[t_0,\\\\infty )\\\\)</span> </span> and <em>X</em> is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from <span> <span>\\\\(L^p(t_0,t_1;X)\\\\)</span> </span> into <span> <span>\\\\(L^{q}(t_0,t_1;X)\\\\)</span> </span>, when <span> <span>\\\\(1\\\\le q&lt; p/(1-p\\\\alpha )\\\\)</span> </span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00255-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00255-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract In this work we study the Riemann-Liouville fractional integral of order \(\alpha \in (0,1/p)\) as an operator from \(L^p(I;X)\) into \(L^{q}(I;X)\) , with\(1\le q\le p/(1-p\alpha )\).with (1嘞 q嘞 p/(1-p\alpha )\),无论是(I=[t_0,t_1]\)还是(I=[t_0,\infty )\),X 都是一个巴拿赫空间。我们的主要结果提供了必要条件和充分条件,以确保从 \(L^p(t_0,t_1;X)\) 到 \(L^{q}(t_0,t_1;X)\) 的黎曼-柳维尔分数积分的紧凑性。, when \(1\le q< p/(1-p\alpha )\) .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II

Abstract

In this work we study the Riemann-Liouville fractional integral of order \(\alpha \in (0,1/p)\) as an operator from \(L^p(I;X)\) into \(L^{q}(I;X)\) , with \(1\le q\le p/(1-p\alpha )\) , whether \(I=[t_0,t_1]\) or \(I=[t_0,\infty )\) and X is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from \(L^p(t_0,t_1;X)\) into \(L^{q}(t_0,t_1;X)\) , when \(1\le q< p/(1-p\alpha )\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信