{"title":"由混合局部-非局部算子驱动的薛定谔-麦克斯韦方程","authors":"","doi":"10.1007/s13540-024-00251-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper we prove existence of solutions to Schrödinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrödinger-Maxwell equations and Schrödinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schrödinger-Maxwell equations driven by mixed local-nonlocal operators\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00251-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper we prove existence of solutions to Schrödinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrödinger-Maxwell equations and Schrödinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00251-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00251-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Schrödinger-Maxwell equations driven by mixed local-nonlocal operators
Abstract
In this paper we prove existence of solutions to Schrödinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrödinger-Maxwell equations and Schrödinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.