{"title":"原基本群的基本精确序列","authors":"Marcin Lara","doi":"10.2140/ant.2024.18.631","DOIUrl":null,"url":null,"abstract":"<p>The pro-étale fundamental group of a scheme, introduced by Bhatt and Scholze, generalizes formerly known fundamental groups — the usual étale fundamental group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> ét</mtext><!--/mstyle--></mrow></msubsup></math> defined in SGA1 and the more general <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>SGA3</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow></msubsup></math>. It controls local systems in the pro-étale topology and leads to an interesting class of “geometric coverings” of schemes, generalizing finite étale coverings. </p><p> We prove exactness of the fundamental sequence for the pro-étale fundamental group of a geometrically connected scheme <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> of finite type over a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>, i.e., that the sequence </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mn>1</mn>\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\"true\"><mrow>\n<mi>k</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mo stretchy=\"false\">)</mo>\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo>\n<mo>→</mo><msub><mrow><mi> Gal</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow>\n<mi>k</mi></mrow></msub>\n<mo>→</mo> <mn>1</mn>\n</math>\n</div>\n<p> is exact as abstract groups and the map <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\"true\"><mrow><mi>k</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mo stretchy=\"false\">)</mo>\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math> is a topological embedding. </p><p> On the way, we prove a general van Kampen theorem and the Künneth formula for the pro-étale fundamental group. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"30 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental exact sequence for the pro-étale fundamental group\",\"authors\":\"Marcin Lara\",\"doi\":\"10.2140/ant.2024.18.631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pro-étale fundamental group of a scheme, introduced by Bhatt and Scholze, generalizes formerly known fundamental groups — the usual étale fundamental group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> ét</mtext><!--/mstyle--></mrow></msubsup></math> defined in SGA1 and the more general <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>SGA3</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow></msubsup></math>. It controls local systems in the pro-étale topology and leads to an interesting class of “geometric coverings” of schemes, generalizing finite étale coverings. </p><p> We prove exactness of the fundamental sequence for the pro-étale fundamental group of a geometrically connected scheme <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> of finite type over a field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>, i.e., that the sequence </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mn>1</mn>\\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\\\"true\\\"><mrow>\\n<mi>k</mi></mrow><mo accent=\\\"true\\\">¯</mo></mover></mrow></msub><mo stretchy=\\\"false\\\">)</mo>\\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>→</mo><msub><mrow><mi> Gal</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow>\\n<mi>k</mi></mrow></msub>\\n<mo>→</mo> <mn>1</mn>\\n</math>\\n</div>\\n<p> is exact as abstract groups and the map <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\\\"true\\\"><mrow><mi>k</mi></mrow><mo accent=\\\"true\\\">¯</mo></mover></mrow></msub><mo stretchy=\\\"false\\\">)</mo>\\n<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">)</mo></math> is a topological embedding. </p><p> On the way, we prove a general van Kampen theorem and the Künneth formula for the pro-étale fundamental group. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.631\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.631","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fundamental exact sequence for the pro-étale fundamental group
The pro-étale fundamental group of a scheme, introduced by Bhatt and Scholze, generalizes formerly known fundamental groups — the usual étale fundamental group defined in SGA1 and the more general . It controls local systems in the pro-étale topology and leads to an interesting class of “geometric coverings” of schemes, generalizing finite étale coverings.
We prove exactness of the fundamental sequence for the pro-étale fundamental group of a geometrically connected scheme of finite type over a field , i.e., that the sequence
is exact as abstract groups and the map is a topological embedding.
On the way, we prove a general van Kampen theorem and the Künneth formula for the pro-étale fundamental group.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.