Menglan Xie, Huiqing Pang, Jing Wang, Zhihao Cui, Hualong Ding, Renjie Zheng, Ray Kwong, Sean Xia
{"title":"有机发光二极管中的电荷平衡:使用新型 p 掺杂剂优化空穴注入层","authors":"Menglan Xie, Huiqing Pang, Jing Wang, Zhihao Cui, Hualong Ding, Renjie Zheng, Ray Kwong, Sean Xia","doi":"10.1002/jsid.1271","DOIUrl":null,"url":null,"abstract":"<p>Charge balance is one of the most important factors for realizing high performance organic light emitting devices (OLEDs). In this work, we provide a novel strategy to improve the charge balance in OLEDs by optimizing the hole injection layer (HIL) as well as the electron transporting layer (ETL) and thereby controlling the charge carrier supplies in the device. First, we develop a p-dopant material (PD02), with a lowest unoccupied molecular orbit (LUMO) of −4.63 eV, much shallower than that of the commercial material (PD01) of which the LUMO is −5.04 eV. Nevertheless, this enables us to modulate the supply of holes to the emissive layer through tuning doping concentration. We demonstrate that device performances are significantly improved by employing such a scheme. With a 23% molar doping of PD02, a bottom emission red OLED achieves an external quantum efficiency (EQE) of over 30%, an operating voltage of 3.4 V and a LT95 ~15,000 h at 10 mA/cm<sup>2</sup>, with a Digital Cinema Initiative P3 (DCI-P3) chromaticity of CIE (X, Y) = (0.68, 0.32). Moreover, the efficiency roll-off is suppressed up till ~3500 cd/m<sup>2</sup>, a desirable feature in display applications. The lateral conductivity of by using such HIL is also found to be much lower than that of PD01, resulting in reduced crosstalk among RGB pixels. Next, a new electron transporting material (ETM-02) with a deep LUMO of −2.86 eV is also introduced to further optimize the charge balance. Although devices with ETM-02 shows lower voltage and higher EQE, lifetime is compromised. In order to improve lifetime, additional fine tuning of the charge balance is essential. Finally, a second p-dopant PD03 with a LUMO of −4.91 eV is added to the HIL to further extend the modulation flexibility in the hole injection. A double-layer HIL consisting of 8 nm of HTM:16% PD02 and 2 nm of HTM:3% PD03, where the former is in contact with anode, is adopted in the device structure. The bottom emission deep red device achieve EQE over 30%, an operating voltage of 3.2 V and an improved LT<sub>95</sub> ~13,000 h at 10 mA/cm<sup>2</sup> with a BT.2020 range chromaticity of CIE (X, Y) = (0.701, 0.299). In the double HIL configuration, the introduction of PD03 provides one more parameter for tuning and therefore improves the overall device performances.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge balance in OLEDs: Optimization of hole injection layer using novel p-dopants\",\"authors\":\"Menglan Xie, Huiqing Pang, Jing Wang, Zhihao Cui, Hualong Ding, Renjie Zheng, Ray Kwong, Sean Xia\",\"doi\":\"10.1002/jsid.1271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Charge balance is one of the most important factors for realizing high performance organic light emitting devices (OLEDs). In this work, we provide a novel strategy to improve the charge balance in OLEDs by optimizing the hole injection layer (HIL) as well as the electron transporting layer (ETL) and thereby controlling the charge carrier supplies in the device. First, we develop a p-dopant material (PD02), with a lowest unoccupied molecular orbit (LUMO) of −4.63 eV, much shallower than that of the commercial material (PD01) of which the LUMO is −5.04 eV. Nevertheless, this enables us to modulate the supply of holes to the emissive layer through tuning doping concentration. We demonstrate that device performances are significantly improved by employing such a scheme. With a 23% molar doping of PD02, a bottom emission red OLED achieves an external quantum efficiency (EQE) of over 30%, an operating voltage of 3.4 V and a LT95 ~15,000 h at 10 mA/cm<sup>2</sup>, with a Digital Cinema Initiative P3 (DCI-P3) chromaticity of CIE (X, Y) = (0.68, 0.32). Moreover, the efficiency roll-off is suppressed up till ~3500 cd/m<sup>2</sup>, a desirable feature in display applications. The lateral conductivity of by using such HIL is also found to be much lower than that of PD01, resulting in reduced crosstalk among RGB pixels. Next, a new electron transporting material (ETM-02) with a deep LUMO of −2.86 eV is also introduced to further optimize the charge balance. Although devices with ETM-02 shows lower voltage and higher EQE, lifetime is compromised. In order to improve lifetime, additional fine tuning of the charge balance is essential. Finally, a second p-dopant PD03 with a LUMO of −4.91 eV is added to the HIL to further extend the modulation flexibility in the hole injection. A double-layer HIL consisting of 8 nm of HTM:16% PD02 and 2 nm of HTM:3% PD03, where the former is in contact with anode, is adopted in the device structure. The bottom emission deep red device achieve EQE over 30%, an operating voltage of 3.2 V and an improved LT<sub>95</sub> ~13,000 h at 10 mA/cm<sup>2</sup> with a BT.2020 range chromaticity of CIE (X, Y) = (0.701, 0.299). In the double HIL configuration, the introduction of PD03 provides one more parameter for tuning and therefore improves the overall device performances.</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1271\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1271","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Charge balance in OLEDs: Optimization of hole injection layer using novel p-dopants
Charge balance is one of the most important factors for realizing high performance organic light emitting devices (OLEDs). In this work, we provide a novel strategy to improve the charge balance in OLEDs by optimizing the hole injection layer (HIL) as well as the electron transporting layer (ETL) and thereby controlling the charge carrier supplies in the device. First, we develop a p-dopant material (PD02), with a lowest unoccupied molecular orbit (LUMO) of −4.63 eV, much shallower than that of the commercial material (PD01) of which the LUMO is −5.04 eV. Nevertheless, this enables us to modulate the supply of holes to the emissive layer through tuning doping concentration. We demonstrate that device performances are significantly improved by employing such a scheme. With a 23% molar doping of PD02, a bottom emission red OLED achieves an external quantum efficiency (EQE) of over 30%, an operating voltage of 3.4 V and a LT95 ~15,000 h at 10 mA/cm2, with a Digital Cinema Initiative P3 (DCI-P3) chromaticity of CIE (X, Y) = (0.68, 0.32). Moreover, the efficiency roll-off is suppressed up till ~3500 cd/m2, a desirable feature in display applications. The lateral conductivity of by using such HIL is also found to be much lower than that of PD01, resulting in reduced crosstalk among RGB pixels. Next, a new electron transporting material (ETM-02) with a deep LUMO of −2.86 eV is also introduced to further optimize the charge balance. Although devices with ETM-02 shows lower voltage and higher EQE, lifetime is compromised. In order to improve lifetime, additional fine tuning of the charge balance is essential. Finally, a second p-dopant PD03 with a LUMO of −4.91 eV is added to the HIL to further extend the modulation flexibility in the hole injection. A double-layer HIL consisting of 8 nm of HTM:16% PD02 and 2 nm of HTM:3% PD03, where the former is in contact with anode, is adopted in the device structure. The bottom emission deep red device achieve EQE over 30%, an operating voltage of 3.2 V and an improved LT95 ~13,000 h at 10 mA/cm2 with a BT.2020 range chromaticity of CIE (X, Y) = (0.701, 0.299). In the double HIL configuration, the introduction of PD03 provides one more parameter for tuning and therefore improves the overall device performances.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.