Courtney Golden;Dan Ilan;Caroline Huang;Niansong Zhang;Zhiru Zhang;Christopher Batten
{"title":"在商用内存计算加速器上支持虚拟矢量指令集","authors":"Courtney Golden;Dan Ilan;Caroline Huang;Niansong Zhang;Zhiru Zhang;Christopher Batten","doi":"10.1109/LCA.2023.3341389","DOIUrl":null,"url":null,"abstract":"Recent work has explored compute-in-SRAM as a promising approach to overcome the traditional processor-memory performance gap. The recently released Associative Processing Unit (APU) from GSI Technology is, to our knowledge, the first commercial compute-in-SRAM accelerator. Prior work on this platform has focused on domain-specific acceleration using direct microcode programming and/or specialized libraries. In this letter, we demonstrate the potential for supporting a more general-purpose vector abstraction on the APU. We implement a virtual vector instruction set based on the recently proposed RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction implementations, and perform detailed instruction microbenchmarking to identify performance benefits and overheads. This work is a first step towards general-purpose computing on domain-specific compute-in-SRAM accelerators.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"29-32"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting a Virtual Vector Instruction Set on a Commercial Compute-in-SRAM Accelerator\",\"authors\":\"Courtney Golden;Dan Ilan;Caroline Huang;Niansong Zhang;Zhiru Zhang;Christopher Batten\",\"doi\":\"10.1109/LCA.2023.3341389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has explored compute-in-SRAM as a promising approach to overcome the traditional processor-memory performance gap. The recently released Associative Processing Unit (APU) from GSI Technology is, to our knowledge, the first commercial compute-in-SRAM accelerator. Prior work on this platform has focused on domain-specific acceleration using direct microcode programming and/or specialized libraries. In this letter, we demonstrate the potential for supporting a more general-purpose vector abstraction on the APU. We implement a virtual vector instruction set based on the recently proposed RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction implementations, and perform detailed instruction microbenchmarking to identify performance benefits and overheads. This work is a first step towards general-purpose computing on domain-specific compute-in-SRAM accelerators.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"29-32\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10352918/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10352918/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Supporting a Virtual Vector Instruction Set on a Commercial Compute-in-SRAM Accelerator
Recent work has explored compute-in-SRAM as a promising approach to overcome the traditional processor-memory performance gap. The recently released Associative Processing Unit (APU) from GSI Technology is, to our knowledge, the first commercial compute-in-SRAM accelerator. Prior work on this platform has focused on domain-specific acceleration using direct microcode programming and/or specialized libraries. In this letter, we demonstrate the potential for supporting a more general-purpose vector abstraction on the APU. We implement a virtual vector instruction set based on the recently proposed RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction implementations, and perform detailed instruction microbenchmarking to identify performance benefits and overheads. This work is a first step towards general-purpose computing on domain-specific compute-in-SRAM accelerators.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.