由轭摆系统驱动的球形机器人在平面上滚动而不打滑的李群建模与仿真

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Simone Fiori
{"title":"由轭摆系统驱动的球形机器人在平面上滚动而不打滑的李群建模与仿真","authors":"Simone Fiori","doi":"10.1016/j.robot.2024.104660","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper aims at introducing a mathematical model of a spherical robot expressed in the language of Lie-group theory. Since the main component of motion is rotational, the space <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mn>3</mn></mrow></math></span> of three-dimensional rotations plays a prominent role in its formulation. Because of friction to the ground, rotation of the external shell results in translational motion. Rolling without slipping implies a constraint on the tangential velocity of the robot at the contact point to the ground which makes it a non-holonomic dynamical system. The mathematical model is obtained upon writing a Lagrangian function that describes the mechanical system and by the Hamilton minimal-action principle modified through d’Alembert virtual work principle to account for non-conservative control actions as well as frictional reactions. The result of the modeling appears as a series of non-holonomic Euler–Poincaré equations of dynamics plus a series of auxiliary equations of reconstruction and advection type. A short discussion on the numerical simulation of such mathematical model complements the main analytic-mechanic development.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024000435/pdfft?md5=b71bc8a7516e2f385020960bdfa91a60&pid=1-s2.0-S0921889024000435-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lie-group modeling and simulation of a spherical robot, actuated by a yoke–pendulum system, rolling over a flat surface without slipping\",\"authors\":\"Simone Fiori\",\"doi\":\"10.1016/j.robot.2024.104660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper aims at introducing a mathematical model of a spherical robot expressed in the language of Lie-group theory. Since the main component of motion is rotational, the space <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mn>3</mn></mrow></math></span> of three-dimensional rotations plays a prominent role in its formulation. Because of friction to the ground, rotation of the external shell results in translational motion. Rolling without slipping implies a constraint on the tangential velocity of the robot at the contact point to the ground which makes it a non-holonomic dynamical system. The mathematical model is obtained upon writing a Lagrangian function that describes the mechanical system and by the Hamilton minimal-action principle modified through d’Alembert virtual work principle to account for non-conservative control actions as well as frictional reactions. The result of the modeling appears as a series of non-holonomic Euler–Poincaré equations of dynamics plus a series of auxiliary equations of reconstruction and advection type. A short discussion on the numerical simulation of such mathematical model complements the main analytic-mechanic development.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000435/pdfft?md5=b71bc8a7516e2f385020960bdfa91a60&pid=1-s2.0-S0921889024000435-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000435\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000435","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在介绍一种用李群理论语言表达的球形机器人数学模型。由于运动的主要成分是旋转,三维旋转空间 SO(3)3 在模型的表述中发挥了重要作用。由于与地面的摩擦,外部外壳的旋转会导致平移运动。在不打滑的情况下滚动意味着机器人在与地面接触点的切向速度受到限制,这使其成为一个非符合人体工程学的动力系统。数学模型是通过编写描述机械系统的拉格朗日函数,以及通过达朗贝尔虚功原理修正的汉密尔顿最小作用原理来获得的,以考虑非保守控制作用和摩擦反应。建模结果显示为一系列非整体欧拉-庞加莱动力学方程以及一系列重构和平流类型的辅助方程。关于此类数学模型数值模拟的简短讨论是对主要分析力学发展的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie-group modeling and simulation of a spherical robot, actuated by a yoke–pendulum system, rolling over a flat surface without slipping

The present paper aims at introducing a mathematical model of a spherical robot expressed in the language of Lie-group theory. Since the main component of motion is rotational, the space SO(3)3 of three-dimensional rotations plays a prominent role in its formulation. Because of friction to the ground, rotation of the external shell results in translational motion. Rolling without slipping implies a constraint on the tangential velocity of the robot at the contact point to the ground which makes it a non-holonomic dynamical system. The mathematical model is obtained upon writing a Lagrangian function that describes the mechanical system and by the Hamilton minimal-action principle modified through d’Alembert virtual work principle to account for non-conservative control actions as well as frictional reactions. The result of the modeling appears as a series of non-holonomic Euler–Poincaré equations of dynamics plus a series of auxiliary equations of reconstruction and advection type. A short discussion on the numerical simulation of such mathematical model complements the main analytic-mechanic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信