{"title":"用于承重位置骨缺损修复的新型工程表面多孔钛。","authors":"Wei Liu, Dong Wang, Guo He, Tingting Li, Xianlong Zhang","doi":"10.1002/jbm.a.37689","DOIUrl":null,"url":null,"abstract":"<p>Porous titanium exhibits low elastic modulus and porous structure is thought to be a promising implant in bone defect repair. However, the bioinert and low mechanical strength of porous titanium have limited its clinical application, especially in load-bearing bone defect repair. Our previous study has reported an infiltration casting and acid corrosion (IC-AC) method to fabricate a novel porous titanium (pTi) with 40% porosity and 0.4 mm pore diameter, which exerts mechanical property matching with cortical bone and interconnected channels. In this study, we introduced a nanoporous coating and incorporated an osteogenic element strontium (Sr) on the surface of porous titanium (named as Sr-micro arch oxidation [MAO]) to improve the osteogenic ability of the pTi by MAO. Better biocompatibility of Sr-MAO was verified by cell adhesion experiment and cell counting kit-8 (CCK-8) test. The in vitro osteogenic-related tests such as immunofluorescence staining, alkaline phosphatase staining and real-time polymerase chain reaction (RT-PCR) demonstrated better osteogenic ability of Sr-MAO. Femoral bone defect repair model was employed to evaluate the osseointegration of samples in vivo. Results of micro-CT scanning, sequential fluorochrome labeling and Van Gieson staining suggested that Sr-MAO showed better in vivo osteogenic ability than other groups. Taking results of both in vitro and in vivo experiment together, this study indicated the Sr-MAO porous titanium could be a promising implant load-bearing bone defect.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 7","pages":"1083-1092"},"PeriodicalIF":3.9000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel porous titanium with engineered surface for bone defect repair in load-bearing position\",\"authors\":\"Wei Liu, Dong Wang, Guo He, Tingting Li, Xianlong Zhang\",\"doi\":\"10.1002/jbm.a.37689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous titanium exhibits low elastic modulus and porous structure is thought to be a promising implant in bone defect repair. However, the bioinert and low mechanical strength of porous titanium have limited its clinical application, especially in load-bearing bone defect repair. Our previous study has reported an infiltration casting and acid corrosion (IC-AC) method to fabricate a novel porous titanium (pTi) with 40% porosity and 0.4 mm pore diameter, which exerts mechanical property matching with cortical bone and interconnected channels. In this study, we introduced a nanoporous coating and incorporated an osteogenic element strontium (Sr) on the surface of porous titanium (named as Sr-micro arch oxidation [MAO]) to improve the osteogenic ability of the pTi by MAO. Better biocompatibility of Sr-MAO was verified by cell adhesion experiment and cell counting kit-8 (CCK-8) test. The in vitro osteogenic-related tests such as immunofluorescence staining, alkaline phosphatase staining and real-time polymerase chain reaction (RT-PCR) demonstrated better osteogenic ability of Sr-MAO. Femoral bone defect repair model was employed to evaluate the osseointegration of samples in vivo. Results of micro-CT scanning, sequential fluorochrome labeling and Van Gieson staining suggested that Sr-MAO showed better in vivo osteogenic ability than other groups. Taking results of both in vitro and in vivo experiment together, this study indicated the Sr-MAO porous titanium could be a promising implant load-bearing bone defect.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"112 7\",\"pages\":\"1083-1092\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37689\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37689","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
多孔钛具有低弹性模量和多孔结构,被认为是一种很有前景的骨缺损修复植入物。然而,多孔钛的生物惰性和低机械强度限制了其临床应用,尤其是在承重骨缺损修复中。我们之前的研究报道了一种浸渗铸造和酸腐蚀(IC-AC)方法,该方法可制造出孔隙率为 40%、孔径为 0.4 毫米的新型多孔钛(pTi),其力学性能与皮质骨和互连通道相匹配。在这项研究中,我们引入了纳米多孔涂层,并在多孔钛表面加入了成骨元素锶(Sr)(命名为锶-微拱氧化[MAO]),通过 MAO 提高了多孔钛的成骨能力。细胞粘附实验和细胞计数试剂盒-8(CCK-8)测试验证了 Sr-MAO 更好的生物相容性。免疫荧光染色、碱性磷酸酶染色和实时聚合酶链反应(RT-PCR)等体外成骨相关测试表明,Sr-MAO 的成骨能力更强。采用股骨头缺损修复模型来评估样品在体内的骨结合情况。显微 CT 扫描、连续荧光标记和 Van Gieson 染色的结果表明,Sr-MAO 的体内成骨能力优于其他组别。综合体外和体内实验结果,该研究表明 Sr-MAO 多孔钛可作为一种有前景的植入承重骨缺损材料。
A novel porous titanium with engineered surface for bone defect repair in load-bearing position
Porous titanium exhibits low elastic modulus and porous structure is thought to be a promising implant in bone defect repair. However, the bioinert and low mechanical strength of porous titanium have limited its clinical application, especially in load-bearing bone defect repair. Our previous study has reported an infiltration casting and acid corrosion (IC-AC) method to fabricate a novel porous titanium (pTi) with 40% porosity and 0.4 mm pore diameter, which exerts mechanical property matching with cortical bone and interconnected channels. In this study, we introduced a nanoporous coating and incorporated an osteogenic element strontium (Sr) on the surface of porous titanium (named as Sr-micro arch oxidation [MAO]) to improve the osteogenic ability of the pTi by MAO. Better biocompatibility of Sr-MAO was verified by cell adhesion experiment and cell counting kit-8 (CCK-8) test. The in vitro osteogenic-related tests such as immunofluorescence staining, alkaline phosphatase staining and real-time polymerase chain reaction (RT-PCR) demonstrated better osteogenic ability of Sr-MAO. Femoral bone defect repair model was employed to evaluate the osseointegration of samples in vivo. Results of micro-CT scanning, sequential fluorochrome labeling and Van Gieson staining suggested that Sr-MAO showed better in vivo osteogenic ability than other groups. Taking results of both in vitro and in vivo experiment together, this study indicated the Sr-MAO porous titanium could be a promising implant load-bearing bone defect.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.