{"title":"通过 CNN 和 LSTM 对任务诱发的 fMRI 数据进行分类,研究人脑内部和区域间的功能连接。","authors":"Haniyeh Kaheni , Mohammad Bagher Shiran Ph.D. , Seyed Kamran Kamrava M.D. , Arash Zare-Sadeghi Ph.D.","doi":"10.1016/j.neurad.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Olfaction is an early marker of neurodegenerative disease. Standard olfactory function is essential due to the importance of olfaction in human life. The psychophysical evaluation assesses the olfactory function commonly. It is patient-reported, and results rely on the patient's answers and collaboration. However, methodological difficulties attributed to the psychophysical evaluation of olfactory-related cerebral areas led to limited assessment of olfactory function in the human brain.</p></div><div><h3>Materials and Methods</h3><p>The current study utilized clustering approaches to assess olfactory function in fMRI data and used brain activity to parcellate the brain with homogeneous properties. Deep neural network architecture based on ResNet convolutional neural networks (CNN) and Long Short-Term Model (LSTM) designed to classify healthy with olfactory disorders subjects.</p></div><div><h3>Results</h3><p>The fMRI result obtained by k-means unsupervised machine learning model was within the expected outcome and similar to those found with the conn toolbox in detecting active areas. There was no significant difference between the means of subjects and every subject. Proposing a CRNN deep learning model to classify fMRI data in two different healthy and with olfactory disorders groups leads to an accuracy score of 97 %.</p></div><div><h3>Conclusions</h3><p>The K-means unsupervised algorithm can detect the active regions in the brain and analyze olfactory function. Classification results prove the CNN-LSTM architecture using ResNet provides the best accuracy score in olfactory fMRI data. It is the first attempt conducted on olfactory fMRI data in detail until now.</p></div>","PeriodicalId":50115,"journal":{"name":"Journal of Neuroradiology","volume":"51 4","pages":"Article 101188"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intra and inter-regional functional connectivity of the human brain due to Task-Evoked fMRI Data classification through CNN & LSTM\",\"authors\":\"Haniyeh Kaheni , Mohammad Bagher Shiran Ph.D. , Seyed Kamran Kamrava M.D. , Arash Zare-Sadeghi Ph.D.\",\"doi\":\"10.1016/j.neurad.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Olfaction is an early marker of neurodegenerative disease. Standard olfactory function is essential due to the importance of olfaction in human life. The psychophysical evaluation assesses the olfactory function commonly. It is patient-reported, and results rely on the patient's answers and collaboration. However, methodological difficulties attributed to the psychophysical evaluation of olfactory-related cerebral areas led to limited assessment of olfactory function in the human brain.</p></div><div><h3>Materials and Methods</h3><p>The current study utilized clustering approaches to assess olfactory function in fMRI data and used brain activity to parcellate the brain with homogeneous properties. Deep neural network architecture based on ResNet convolutional neural networks (CNN) and Long Short-Term Model (LSTM) designed to classify healthy with olfactory disorders subjects.</p></div><div><h3>Results</h3><p>The fMRI result obtained by k-means unsupervised machine learning model was within the expected outcome and similar to those found with the conn toolbox in detecting active areas. There was no significant difference between the means of subjects and every subject. Proposing a CRNN deep learning model to classify fMRI data in two different healthy and with olfactory disorders groups leads to an accuracy score of 97 %.</p></div><div><h3>Conclusions</h3><p>The K-means unsupervised algorithm can detect the active regions in the brain and analyze olfactory function. Classification results prove the CNN-LSTM architecture using ResNet provides the best accuracy score in olfactory fMRI data. It is the first attempt conducted on olfactory fMRI data in detail until now.</p></div>\",\"PeriodicalId\":50115,\"journal\":{\"name\":\"Journal of Neuroradiology\",\"volume\":\"51 4\",\"pages\":\"Article 101188\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0150986124001093\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0150986124001093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Intra and inter-regional functional connectivity of the human brain due to Task-Evoked fMRI Data classification through CNN & LSTM
Background and purpose
Olfaction is an early marker of neurodegenerative disease. Standard olfactory function is essential due to the importance of olfaction in human life. The psychophysical evaluation assesses the olfactory function commonly. It is patient-reported, and results rely on the patient's answers and collaboration. However, methodological difficulties attributed to the psychophysical evaluation of olfactory-related cerebral areas led to limited assessment of olfactory function in the human brain.
Materials and Methods
The current study utilized clustering approaches to assess olfactory function in fMRI data and used brain activity to parcellate the brain with homogeneous properties. Deep neural network architecture based on ResNet convolutional neural networks (CNN) and Long Short-Term Model (LSTM) designed to classify healthy with olfactory disorders subjects.
Results
The fMRI result obtained by k-means unsupervised machine learning model was within the expected outcome and similar to those found with the conn toolbox in detecting active areas. There was no significant difference between the means of subjects and every subject. Proposing a CRNN deep learning model to classify fMRI data in two different healthy and with olfactory disorders groups leads to an accuracy score of 97 %.
Conclusions
The K-means unsupervised algorithm can detect the active regions in the brain and analyze olfactory function. Classification results prove the CNN-LSTM architecture using ResNet provides the best accuracy score in olfactory fMRI data. It is the first attempt conducted on olfactory fMRI data in detail until now.
期刊介绍:
The Journal of Neuroradiology is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of diagnostic and Interventional neuroradiology, translational and molecular neuroimaging, and artificial intelligence in neuroradiology.
The Journal of Neuroradiology considers for publication articles, reviews, technical notes and letters to the editors (correspondence section), provided that the methodology and scientific content are of high quality, and that the results will have substantial clinical impact and/or physiological importance.