Sang Ho Lee, Myeong Seop Song, Min-Hwan Oh, Woo-Young Ahn
{"title":"缩小自我报告与行为实验室测量之间的差距:反强化学习的实时驾驶任务","authors":"Sang Ho Lee, Myeong Seop Song, Min-Hwan Oh, Woo-Young Ahn","doi":"10.1177/09567976241228503","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in assessing psychological constructs such as impulsivity is the weak correlation between self-report and behavioral task measures that are supposed to assess the same construct. To address this issue, we developed a real-time driving task called the \"highway task,\" in which participants often exhibit impulsive behaviors mirroring real-life impulsive traits captured by self-report questionnaires. Here, we show that a self-report measure of impulsivity is highly correlated with performance in the highway task but not with traditional behavioral task measures of impulsivity (47 adults aged 18-33 years). By integrating deep neural networks with an inverse reinforcement learning (IRL) algorithm, we inferred dynamic changes of subjective rewards during the highway task. The results indicated that impulsive participants attribute high subjective rewards to irrational or risky situations. Overall, our results suggest that using real-time tasks combined with IRL can help reconcile the discrepancy between self-report and behavioral task measures of psychological constructs.</p>","PeriodicalId":20745,"journal":{"name":"Psychological Science","volume":" ","pages":"345-357"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Gap Between Self-Report and Behavioral Laboratory Measures: A Real-Time Driving Task With Inverse Reinforcement Learning.\",\"authors\":\"Sang Ho Lee, Myeong Seop Song, Min-Hwan Oh, Woo-Young Ahn\",\"doi\":\"10.1177/09567976241228503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major challenge in assessing psychological constructs such as impulsivity is the weak correlation between self-report and behavioral task measures that are supposed to assess the same construct. To address this issue, we developed a real-time driving task called the \\\"highway task,\\\" in which participants often exhibit impulsive behaviors mirroring real-life impulsive traits captured by self-report questionnaires. Here, we show that a self-report measure of impulsivity is highly correlated with performance in the highway task but not with traditional behavioral task measures of impulsivity (47 adults aged 18-33 years). By integrating deep neural networks with an inverse reinforcement learning (IRL) algorithm, we inferred dynamic changes of subjective rewards during the highway task. The results indicated that impulsive participants attribute high subjective rewards to irrational or risky situations. Overall, our results suggest that using real-time tasks combined with IRL can help reconcile the discrepancy between self-report and behavioral task measures of psychological constructs.</p>\",\"PeriodicalId\":20745,\"journal\":{\"name\":\"Psychological Science\",\"volume\":\" \",\"pages\":\"345-357\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/09567976241228503\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09567976241228503","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging the Gap Between Self-Report and Behavioral Laboratory Measures: A Real-Time Driving Task With Inverse Reinforcement Learning.
A major challenge in assessing psychological constructs such as impulsivity is the weak correlation between self-report and behavioral task measures that are supposed to assess the same construct. To address this issue, we developed a real-time driving task called the "highway task," in which participants often exhibit impulsive behaviors mirroring real-life impulsive traits captured by self-report questionnaires. Here, we show that a self-report measure of impulsivity is highly correlated with performance in the highway task but not with traditional behavioral task measures of impulsivity (47 adults aged 18-33 years). By integrating deep neural networks with an inverse reinforcement learning (IRL) algorithm, we inferred dynamic changes of subjective rewards during the highway task. The results indicated that impulsive participants attribute high subjective rewards to irrational or risky situations. Overall, our results suggest that using real-time tasks combined with IRL can help reconcile the discrepancy between self-report and behavioral task measures of psychological constructs.
期刊介绍:
Psychological Science, the flagship journal of The Association for Psychological Science (previously the American Psychological Society), is a leading publication in the field with a citation ranking/impact factor among the top ten worldwide. It publishes authoritative articles covering various domains of psychological science, including brain and behavior, clinical science, cognition, learning and memory, social psychology, and developmental psychology. In addition to full-length articles, the journal features summaries of new research developments and discussions on psychological issues in government and public affairs. "Psychological Science" is published twelve times annually.