ApcE 在 Synechocystis PCC6803 植物体的光诱导激发能量耗散中发挥着重要作用。

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Photosynthesis Research Pub Date : 2024-04-01 Epub Date: 2024-02-26 DOI:10.1007/s11120-024-01078-6
Gonfa Tesfaye Assefa, Joshua L Botha, Bertus van Heerden, Farooq Kyeyune, Tjaart P J Krüger, Michal Gwizdala
{"title":"ApcE 在 Synechocystis PCC6803 植物体的光诱导激发能量耗散中发挥着重要作用。","authors":"Gonfa Tesfaye Assefa, Joshua L Botha, Bertus van Heerden, Farooq Kyeyune, Tjaart P J Krüger, Michal Gwizdala","doi":"10.1007/s11120-024-01078-6","DOIUrl":null,"url":null,"abstract":"<p><p>Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006782/pdf/","citationCount":"0","resultStr":"{\"title\":\"ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes.\",\"authors\":\"Gonfa Tesfaye Assefa, Joshua L Botha, Bertus van Heerden, Farooq Kyeyune, Tjaart P J Krüger, Michal Gwizdala\",\"doi\":\"10.1007/s11120-024-01078-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-024-01078-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01078-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶绿体(PB)在蓝藻的光合作用中发挥着重要作用。它们捕捉光并将激发能量转移到光合反应中心。它们也是一些光保护和光调节机制的核心,有助于在非最佳条件下维持光合作用。在参与激发能量耗散的机制中,最近发现的一种光诱导机制在过度光照下被激活,这种机制是 PBs 固有的,但研究得最少。在这里,我们使用单分子光谱学并开发了稳健的数据分析方法来探索末端发射器亚基 ApcE 在这种内在的光诱导机制中的作用。我们从 WT Synechocystis PCC 6803 以及该菌株的 ApcE-C190S 突变体中分离出了 PBs,并比较了它们的荧光发射动态。从突变体(即 ApcE-C190S-PBs)中分离出的 PBs 尽管没有结合复合物中的一些红移色素,但却显示出与 WT-PBs 相似的全局发射动态。然而,对核心动态的详细分析显示,ApcE-C190S-PBs 在光照下进入淬灭态的可能性比 WT-PBs 小,但仍完全有能力进入淬灭态。这一结果表明,ApcE 色素在 PBs 的光诱导本征激发能量耗散机制中扮演着重要但并非唯一的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes.

ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes.

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信