用于生物医学应用的杜鹃花基金属纳米粒子的生态友好合成及未来展望。

Q2 Pharmacology, Toxicology and Pharmaceutics
Puja Kumari, Laxmi Devi, Renu Kadian, Aafrin Waziri, Md Sabir Alam
{"title":"用于生物医学应用的杜鹃花基金属纳米粒子的生态友好合成及未来展望。","authors":"Puja Kumari, Laxmi Devi, Renu Kadian, Aafrin Waziri, Md Sabir Alam","doi":"10.2174/0122117385262947240206055107","DOIUrl":null,"url":null,"abstract":"<p><p>The process of producing the metallic nanoparticles (MNPs) in a sustainable and environment- friendly process is very desirable due to environmental hazards posed by climatic changes. Biomedical one of the fields classified under nanoscience, nanoparticles have a potential synthetic application, which makes it a vast area of research. These particles can be prepared using chemical, physical, and biological methods. One of the methods of synthesis of nanoparticles is by the use of plant extracts, known as green synthesis. Because of its low cost and nontoxicity, it has gained attention in recent times. This review was conducted to find the possible outcomes and uses of metallic nanoparticles synthesized using different parts like gum, root, stem, leaf, fruits, etc. of Azadirachta indica (AI). AI, a popular medicinal plant commonly known as neem, has been studied for the green synthesis of NPs by using the capping and reducing agents secreted by the plant. Various phytochemicals identified in neem are capable of metal ion reduction. Green synthesis of NPs from neem is an eco-friendly and low-cost method. These NPs are reported to exhibit good antimicrobial activity. The review covers the preparation, characterization, and mechanism associated with the antibacterial, anticancer, and neurological diseases of the MNPs. Furthermore, the limitations associated with the existing NPs and the prospects of these NPs are also examined.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly Synthesis of Azadirachta indica-based Metallic Nanoparticles for Biomedical Application & Future Prospective.\",\"authors\":\"Puja Kumari, Laxmi Devi, Renu Kadian, Aafrin Waziri, Md Sabir Alam\",\"doi\":\"10.2174/0122117385262947240206055107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The process of producing the metallic nanoparticles (MNPs) in a sustainable and environment- friendly process is very desirable due to environmental hazards posed by climatic changes. Biomedical one of the fields classified under nanoscience, nanoparticles have a potential synthetic application, which makes it a vast area of research. These particles can be prepared using chemical, physical, and biological methods. One of the methods of synthesis of nanoparticles is by the use of plant extracts, known as green synthesis. Because of its low cost and nontoxicity, it has gained attention in recent times. This review was conducted to find the possible outcomes and uses of metallic nanoparticles synthesized using different parts like gum, root, stem, leaf, fruits, etc. of Azadirachta indica (AI). AI, a popular medicinal plant commonly known as neem, has been studied for the green synthesis of NPs by using the capping and reducing agents secreted by the plant. Various phytochemicals identified in neem are capable of metal ion reduction. Green synthesis of NPs from neem is an eco-friendly and low-cost method. These NPs are reported to exhibit good antimicrobial activity. The review covers the preparation, characterization, and mechanism associated with the antibacterial, anticancer, and neurological diseases of the MNPs. Furthermore, the limitations associated with the existing NPs and the prospects of these NPs are also examined.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385262947240206055107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385262947240206055107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变化带来的环境危害,以可持续和环境友好的方式生产金属纳米粒子(MNPs)的工艺非常可取。生物医学是纳米科学的分类领域之一,纳米粒子具有潜在的合成应用,这使其成为一个广阔的研究领域。这些微粒可以用化学、物理和生物方法制备。合成纳米粒子的方法之一是使用植物提取物,即所谓的绿色合成。由于其成本低、无毒性,近来备受关注。本综述旨在了解利用 Azadirachta indica(AI)的树胶、根、茎、叶、果实等不同部位合成金属纳米粒子的可能结果和用途。AI 是一种常用的药用植物,俗称印楝,研究人员利用该植物分泌的封端剂和还原剂进行了纳米粒子的绿色合成。在楝树中发现的多种植物化学物质能够还原金属离子。从楝树中绿色合成 NPs 是一种环保且低成本的方法。据报道,这些 NPs 具有良好的抗菌活性。综述涵盖了 MNPs 的制备、表征以及与抗菌、抗癌和神经疾病相关的机理。此外,还探讨了现有 NPs 的相关局限性以及这些 NPs 的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-friendly Synthesis of Azadirachta indica-based Metallic Nanoparticles for Biomedical Application & Future Prospective.

The process of producing the metallic nanoparticles (MNPs) in a sustainable and environment- friendly process is very desirable due to environmental hazards posed by climatic changes. Biomedical one of the fields classified under nanoscience, nanoparticles have a potential synthetic application, which makes it a vast area of research. These particles can be prepared using chemical, physical, and biological methods. One of the methods of synthesis of nanoparticles is by the use of plant extracts, known as green synthesis. Because of its low cost and nontoxicity, it has gained attention in recent times. This review was conducted to find the possible outcomes and uses of metallic nanoparticles synthesized using different parts like gum, root, stem, leaf, fruits, etc. of Azadirachta indica (AI). AI, a popular medicinal plant commonly known as neem, has been studied for the green synthesis of NPs by using the capping and reducing agents secreted by the plant. Various phytochemicals identified in neem are capable of metal ion reduction. Green synthesis of NPs from neem is an eco-friendly and low-cost method. These NPs are reported to exhibit good antimicrobial activity. The review covers the preparation, characterization, and mechanism associated with the antibacterial, anticancer, and neurological diseases of the MNPs. Furthermore, the limitations associated with the existing NPs and the prospects of these NPs are also examined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信