Nikolaos A Diakos, Lija Swain, Shreyas Bhave, Xiaoying Qiao, Towia Libermann, Jillian Haywood, Siya Goel, Shiva Annamalai, Michele Esposito, Haval Chweich, Anthony Faugno, Navin K Kapur
{"title":"循环蛋白质组分析发现心源性休克患者使用静脉-动脉体外膜氧合或Impella启动血流动力学支持后炎症减少","authors":"Nikolaos A Diakos, Lija Swain, Shreyas Bhave, Xiaoying Qiao, Towia Libermann, Jillian Haywood, Siya Goel, Shiva Annamalai, Michele Esposito, Haval Chweich, Anthony Faugno, Navin K Kapur","doi":"10.1007/s12265-024-10501-1","DOIUrl":null,"url":null,"abstract":"<p><p>In-hospital mortality associated with cardiogenic shock (CS) remains high despite the use of percutaneous assist devices. We sought to determine whether support with VA-ECMO or Impella in patients with CS alters specific components of the plasma proteome. Plasma samples were collected before device implantation and 72 h after initiation of support in 11 CS patients receiving ECMO or Impella. SOMAscan was used to detect 1305 circulating proteins. Sixty-seven proteins were changed after ECMO (18 upregulated and 49 downregulated, p < 0.05), 38 after Impella (10 upregulated and 28 downregulated, p < 0.05), and only eight proteins were commonly affected. Despite minimal protein overlap, both devices were associated with markers of reduced inflammation and increased apoptosis of inflammatory cells. In summary, ECMO and Impella are associated with reduced expression of inflammatory markers and increased markers of inflammatory cell death. These circulating proteins may serve as novel targets of therapy or biomarkers to tailor AMCS use.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"935-945"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulating Proteome Analysis Identifies Reduced Inflammation After Initiation of Hemodynamic Support with Either Veno-Arterial Extracorporeal Membrane Oxygenation or Impella in Patients with Cardiogenic Shock.\",\"authors\":\"Nikolaos A Diakos, Lija Swain, Shreyas Bhave, Xiaoying Qiao, Towia Libermann, Jillian Haywood, Siya Goel, Shiva Annamalai, Michele Esposito, Haval Chweich, Anthony Faugno, Navin K Kapur\",\"doi\":\"10.1007/s12265-024-10501-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-hospital mortality associated with cardiogenic shock (CS) remains high despite the use of percutaneous assist devices. We sought to determine whether support with VA-ECMO or Impella in patients with CS alters specific components of the plasma proteome. Plasma samples were collected before device implantation and 72 h after initiation of support in 11 CS patients receiving ECMO or Impella. SOMAscan was used to detect 1305 circulating proteins. Sixty-seven proteins were changed after ECMO (18 upregulated and 49 downregulated, p < 0.05), 38 after Impella (10 upregulated and 28 downregulated, p < 0.05), and only eight proteins were commonly affected. Despite minimal protein overlap, both devices were associated with markers of reduced inflammation and increased apoptosis of inflammatory cells. In summary, ECMO and Impella are associated with reduced expression of inflammatory markers and increased markers of inflammatory cell death. These circulating proteins may serve as novel targets of therapy or biomarkers to tailor AMCS use.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"935-945\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-024-10501-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12265-024-10501-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Circulating Proteome Analysis Identifies Reduced Inflammation After Initiation of Hemodynamic Support with Either Veno-Arterial Extracorporeal Membrane Oxygenation or Impella in Patients with Cardiogenic Shock.
In-hospital mortality associated with cardiogenic shock (CS) remains high despite the use of percutaneous assist devices. We sought to determine whether support with VA-ECMO or Impella in patients with CS alters specific components of the plasma proteome. Plasma samples were collected before device implantation and 72 h after initiation of support in 11 CS patients receiving ECMO or Impella. SOMAscan was used to detect 1305 circulating proteins. Sixty-seven proteins were changed after ECMO (18 upregulated and 49 downregulated, p < 0.05), 38 after Impella (10 upregulated and 28 downregulated, p < 0.05), and only eight proteins were commonly affected. Despite minimal protein overlap, both devices were associated with markers of reduced inflammation and increased apoptosis of inflammatory cells. In summary, ECMO and Impella are associated with reduced expression of inflammatory markers and increased markers of inflammatory cell death. These circulating proteins may serve as novel targets of therapy or biomarkers to tailor AMCS use.
期刊介绍:
Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research.
JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials.
JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.