{"title":"评估鱼类垂体球体以研究年度内分泌生殖控制。","authors":"Akihiko Yamaguchi","doi":"10.1016/j.ygcen.2024.114481","DOIUrl":null,"url":null,"abstract":"<div><p>The pituitary gland is a small endocrine gland located below the hypothalamus. This gland releases several important hormones and controls the function of many other endocrine system glands to release hormones. Fish pituitary hormonal cells are controlled by neuroendocrine and sex steroid feedback. To study the complex pituitary function <em>in vivo</em>, we established an <em>in vitro</em> pituitary spheroid assay and evaluated its suitability for monitoring the annual reproductive physiological conditions in <em>Takifugu rubripes,</em> also known as torafugu, is one of the most economically important species distributed in the northwestern part of the Pacific Ocean, in the western part of the East China Sea, and in more northern areas near Hokkaido, Japan. Fish pituitary spheroids can be easily constructed in liquid or solid plates. The culture medium (L-15) made the aggregation faster than MEM (Hank’s). A Rho-kinase inhibitor (Y-27632, 10 μM) and/or fish serum (2.5 %) also promoted spheroid formation. Laser confocal microscopy analysis of spheroids cultured with annual serum of both sexes revealed that luteinizing hormone (LH) synthesis has the highest peak in the final maturation stage (3 years old, May) in accordance with the highest serum sex steroid levels; in contrast, follicle stimulating hormone (FSH) synthesis has no correlation with the dose of serum or nutrients. Similarly, 3D cell propagation assays using female serum showed that total pituitary cells displayed the highest proliferation at puberty onset (2 years old, October) before half a year of the spawning season. These results indicate that pituitary spheroids are useful <em>in vitro</em> models for monitoring the reproductive physiological status of fish <em>in vivo</em> and may be applicable to the <em>in vitro</em> screening of environmental chemicals and bioactive compounds affecting reproductive efficiency in aquaculture.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fish pituitary spheroids to study annual endocrine reproductive control\",\"authors\":\"Akihiko Yamaguchi\",\"doi\":\"10.1016/j.ygcen.2024.114481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pituitary gland is a small endocrine gland located below the hypothalamus. This gland releases several important hormones and controls the function of many other endocrine system glands to release hormones. Fish pituitary hormonal cells are controlled by neuroendocrine and sex steroid feedback. To study the complex pituitary function <em>in vivo</em>, we established an <em>in vitro</em> pituitary spheroid assay and evaluated its suitability for monitoring the annual reproductive physiological conditions in <em>Takifugu rubripes,</em> also known as torafugu, is one of the most economically important species distributed in the northwestern part of the Pacific Ocean, in the western part of the East China Sea, and in more northern areas near Hokkaido, Japan. Fish pituitary spheroids can be easily constructed in liquid or solid plates. The culture medium (L-15) made the aggregation faster than MEM (Hank’s). A Rho-kinase inhibitor (Y-27632, 10 μM) and/or fish serum (2.5 %) also promoted spheroid formation. Laser confocal microscopy analysis of spheroids cultured with annual serum of both sexes revealed that luteinizing hormone (LH) synthesis has the highest peak in the final maturation stage (3 years old, May) in accordance with the highest serum sex steroid levels; in contrast, follicle stimulating hormone (FSH) synthesis has no correlation with the dose of serum or nutrients. Similarly, 3D cell propagation assays using female serum showed that total pituitary cells displayed the highest proliferation at puberty onset (2 years old, October) before half a year of the spawning season. These results indicate that pituitary spheroids are useful <em>in vitro</em> models for monitoring the reproductive physiological status of fish <em>in vivo</em> and may be applicable to the <em>in vitro</em> screening of environmental chemicals and bioactive compounds affecting reproductive efficiency in aquaculture.</p></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016648024000418\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024000418","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Evaluation of fish pituitary spheroids to study annual endocrine reproductive control
The pituitary gland is a small endocrine gland located below the hypothalamus. This gland releases several important hormones and controls the function of many other endocrine system glands to release hormones. Fish pituitary hormonal cells are controlled by neuroendocrine and sex steroid feedback. To study the complex pituitary function in vivo, we established an in vitro pituitary spheroid assay and evaluated its suitability for monitoring the annual reproductive physiological conditions in Takifugu rubripes, also known as torafugu, is one of the most economically important species distributed in the northwestern part of the Pacific Ocean, in the western part of the East China Sea, and in more northern areas near Hokkaido, Japan. Fish pituitary spheroids can be easily constructed in liquid or solid plates. The culture medium (L-15) made the aggregation faster than MEM (Hank’s). A Rho-kinase inhibitor (Y-27632, 10 μM) and/or fish serum (2.5 %) also promoted spheroid formation. Laser confocal microscopy analysis of spheroids cultured with annual serum of both sexes revealed that luteinizing hormone (LH) synthesis has the highest peak in the final maturation stage (3 years old, May) in accordance with the highest serum sex steroid levels; in contrast, follicle stimulating hormone (FSH) synthesis has no correlation with the dose of serum or nutrients. Similarly, 3D cell propagation assays using female serum showed that total pituitary cells displayed the highest proliferation at puberty onset (2 years old, October) before half a year of the spawning season. These results indicate that pituitary spheroids are useful in vitro models for monitoring the reproductive physiological status of fish in vivo and may be applicable to the in vitro screening of environmental chemicals and bioactive compounds affecting reproductive efficiency in aquaculture.
期刊介绍:
General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.