{"title":"振动微针和低频声波电泳系统渗透效果比较研究","authors":"Tingting Liu, Kai Chen, Zhigang Yan, Qiao Wang","doi":"10.1007/s13346-024-01547-4","DOIUrl":null,"url":null,"abstract":"<p><p>Microneedle transdermal administration and low-frequency ultrasound represent two important physical penetration-promoting methods for enhancing drug penetration. This article aims to investigate and compare the effects of drug penetration enhancement through transdermal administration using vibrating microneedles versus low-frequency sonophoresis. In Vitro permeation studies were conducted using Valia-Chien double chamber diffusion cells to evaluate the transdermal delivery of tetramethylpyrazine hydrochloride (TMPH). The TMPH concentration in the receiving compartment was determined using high-performance liquid chromatography (HPLC). Several combinations of microneedles and ultrasound settings were investigated, including different needle heights, vibration frequencies, exposure times, and assorted distances of ultrasound horn and skin. The results revealed the vibrating microneedle system as the most efficacious treatment to increase the TMPH permeability into the rat skin. The combination of a larger needle, higher frequency, and a 3-min exposure led to a 41.92-fold increase in cumulative permeability compared to the control group. The ultrasound treatment exhibited a moderate enhancement effect on TMPH skin penetration. Using a horn-to-skin distance of 3 mm and a 3-min exposure resulted in a 4.34-fold increase in TMPH cumulative permeation compared to the control group. It could be concluded that while both the vibrating microneedle and the low-frequency ultrasound systems act as penetration enhancers for promoting the TMPH permeation through the skin, the vibrating microneedle system notably demonstrates a more effective penetration-promoting effect.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3239-3249"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of permeation effects between vibrating microneedle and low-frequency sonophoresis systems.\",\"authors\":\"Tingting Liu, Kai Chen, Zhigang Yan, Qiao Wang\",\"doi\":\"10.1007/s13346-024-01547-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microneedle transdermal administration and low-frequency ultrasound represent two important physical penetration-promoting methods for enhancing drug penetration. This article aims to investigate and compare the effects of drug penetration enhancement through transdermal administration using vibrating microneedles versus low-frequency sonophoresis. In Vitro permeation studies were conducted using Valia-Chien double chamber diffusion cells to evaluate the transdermal delivery of tetramethylpyrazine hydrochloride (TMPH). The TMPH concentration in the receiving compartment was determined using high-performance liquid chromatography (HPLC). Several combinations of microneedles and ultrasound settings were investigated, including different needle heights, vibration frequencies, exposure times, and assorted distances of ultrasound horn and skin. The results revealed the vibrating microneedle system as the most efficacious treatment to increase the TMPH permeability into the rat skin. The combination of a larger needle, higher frequency, and a 3-min exposure led to a 41.92-fold increase in cumulative permeability compared to the control group. The ultrasound treatment exhibited a moderate enhancement effect on TMPH skin penetration. Using a horn-to-skin distance of 3 mm and a 3-min exposure resulted in a 4.34-fold increase in TMPH cumulative permeation compared to the control group. It could be concluded that while both the vibrating microneedle and the low-frequency ultrasound systems act as penetration enhancers for promoting the TMPH permeation through the skin, the vibrating microneedle system notably demonstrates a more effective penetration-promoting effect.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"3239-3249\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01547-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01547-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Comparative study of permeation effects between vibrating microneedle and low-frequency sonophoresis systems.
Microneedle transdermal administration and low-frequency ultrasound represent two important physical penetration-promoting methods for enhancing drug penetration. This article aims to investigate and compare the effects of drug penetration enhancement through transdermal administration using vibrating microneedles versus low-frequency sonophoresis. In Vitro permeation studies were conducted using Valia-Chien double chamber diffusion cells to evaluate the transdermal delivery of tetramethylpyrazine hydrochloride (TMPH). The TMPH concentration in the receiving compartment was determined using high-performance liquid chromatography (HPLC). Several combinations of microneedles and ultrasound settings were investigated, including different needle heights, vibration frequencies, exposure times, and assorted distances of ultrasound horn and skin. The results revealed the vibrating microneedle system as the most efficacious treatment to increase the TMPH permeability into the rat skin. The combination of a larger needle, higher frequency, and a 3-min exposure led to a 41.92-fold increase in cumulative permeability compared to the control group. The ultrasound treatment exhibited a moderate enhancement effect on TMPH skin penetration. Using a horn-to-skin distance of 3 mm and a 3-min exposure resulted in a 4.34-fold increase in TMPH cumulative permeation compared to the control group. It could be concluded that while both the vibrating microneedle and the low-frequency ultrasound systems act as penetration enhancers for promoting the TMPH permeation through the skin, the vibrating microneedle system notably demonstrates a more effective penetration-promoting effect.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.