在临床流式细胞仪中使用人工智能的建议。

IF 2.3 3区 医学 Q3 MEDICAL LABORATORY TECHNOLOGY
David P. Ng, Paul D. Simonson, Attila Tarnok, Fabienne Lucas, Wolfgang Kern, Nina Rolf, Goce Bogdanoski, Cherie Green, Ryan R. Brinkman, Kamila Czechowska
{"title":"在临床流式细胞仪中使用人工智能的建议。","authors":"David P. Ng,&nbsp;Paul D. Simonson,&nbsp;Attila Tarnok,&nbsp;Fabienne Lucas,&nbsp;Wolfgang Kern,&nbsp;Nina Rolf,&nbsp;Goce Bogdanoski,&nbsp;Cherie Green,&nbsp;Ryan R. Brinkman,&nbsp;Kamila Czechowska","doi":"10.1002/cyto.b.22166","DOIUrl":null,"url":null,"abstract":"<p>Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendations for using artificial intelligence in clinical flow cytometry\",\"authors\":\"David P. Ng,&nbsp;Paul D. Simonson,&nbsp;Attila Tarnok,&nbsp;Fabienne Lucas,&nbsp;Wolfgang Kern,&nbsp;Nina Rolf,&nbsp;Goce Bogdanoski,&nbsp;Cherie Green,&nbsp;Ryan R. Brinkman,&nbsp;Kamila Czechowska\",\"doi\":\"10.1002/cyto.b.22166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.</p>\",\"PeriodicalId\":10883,\"journal\":{\"name\":\"Cytometry Part B: Clinical Cytometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part B: Clinical Cytometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22166\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流式细胞术是诊断许多血液系统恶性肿瘤的关键临床工具,传统上需要具备专业领域知识的血液病理学家对数字数据进行仔细检查。人工智能(AI)的进步可应用于流式细胞术,并有可能提高效率和病例的优先级、减少错误并突出以前未认识到的与潜在生物过程的基本关联。作为一个由多学科利益相关者组成的小组,我们回顾了将人工智能适当应用于临床流式细胞术的一系列重要考虑因素,包括用例识别、低风险和高风险用例、验证、再验证、计算考虑因素以及目前围绕人工智能在临床医学中的应用的监管框架。特别是,我们为临床流式细胞术实验室中基于人工智能方法的开发、实施和潜在监管提供了实用指南和建议。我们希望这些建议能成为一个有用的初步参考框架,随着该领域的成熟,还需要进行更多更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendations for using artificial intelligence in clinical flow cytometry

Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
32.40%
发文量
51
审稿时长
>12 weeks
期刊介绍: Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信