昆虫微生物群是生物活性小分子的巨大来源。

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Carlismari Oliveira Grundmann , Juan Guzman , Andreas Vilcinskas , Mônica Tallarico Pupo
{"title":"昆虫微生物群是生物活性小分子的巨大来源。","authors":"Carlismari Oliveira Grundmann ,&nbsp;Juan Guzman ,&nbsp;Andreas Vilcinskas ,&nbsp;Mônica Tallarico Pupo","doi":"10.1039/d3np00054k","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: September 1964 to June 2023</p></div><div><p>Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as <em>Streptomyces</em> and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The insect microbiome is a vast source of bioactive small molecules†\",\"authors\":\"Carlismari Oliveira Grundmann ,&nbsp;Juan Guzman ,&nbsp;Andreas Vilcinskas ,&nbsp;Mônica Tallarico Pupo\",\"doi\":\"10.1039/d3np00054k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: September 1964 to June 2023</p></div><div><p>Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as <em>Streptomyces</em> and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.</p></div>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056824000369\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000369","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

覆盖范围:1964 年 9 月至 2023 年 6 月与昆虫共生的细菌和真菌是生物活性天然产品的重要来源。不仅是链霉菌和放线菌门的其他成员等经典的次级代谢产物生产者,还有大量的变形菌门和固醇菌门的细菌以及一系列令人印象深刻的真菌(通常是致病菌),它们都是具有重要生物活性(包括抗菌、细胞毒性、抗寄生虫和特异性酶抑制剂)的结构多样的小分子的来源。昆虫生态位通常是微生物的唯一提供者,这些微生物能产生独特类型的生物活性化合物,如克鲁菌素、 pederin、dinactin 和 formicamycins。然而,许多昆虫仍未在分类学上得到描述,在大多数情况下,对其微生物区系的研究也是完全空白。在这篇综述中,我们根据化合物类型(而不是昆虫或微生物来源)对所有数据进行了整理和分类,从而对从昆虫中分离出的微生物产生的 553 种天然产物进行了全面调查。通过分析与昆虫、微生物伙伴及其产生的化合物相关的元数据,我们可以深入了解昆虫与其共生体之间错综复杂的动态关系,以及昆虫代谢物对这些关系的影响。在此,我们将重点介绍最相关化合物的化学结构、生物合成和生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The insect microbiome is a vast source of bioactive small molecules†

The insect microbiome is a vast source of bioactive small molecules†

The insect microbiome is a vast source of bioactive small molecules†

Covering: September 1964 to June 2023

Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信