{"title":"具有 f-f 电子耦合的安德森晶格哈密顿的经典变换","authors":"Guang-Lin Zhao","doi":"10.1155/2024/7851286","DOIUrl":null,"url":null,"abstract":"In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"27 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling\",\"authors\":\"Guang-Lin Zhao\",\"doi\":\"10.1155/2024/7851286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7851286\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/7851286","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
这项研究为具有 f-f 电子耦合的安德森晶格哈密顿建立了一种新的规范变换,并进一步利用这种变换确定了一种新的近藤晶格哈密顿。与单杂质近藤效应不同,在二阶近似条件下,新的近藤晶格哈密顿只包括传导电子和 f 电子之间的自旋翻转散射过程,而非自旋翻转散射的正常过程在这个哈密顿中是不存在的。新的近藤晶格哈密顿可以用来研究一些近藤晶格金属间化合物的异常物理性质。
A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling
In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.