考虑接触因素的柔性机器人多体动态建模与运动分析

IF 2.6 2区 工程技术 Q2 MECHANICS
Tingke Wu, Zhuyong Liu, Ziqi Ma, Boyang Wang
{"title":"考虑接触因素的柔性机器人多体动态建模与运动分析","authors":"Tingke Wu, Zhuyong Liu, Ziqi Ma, Boyang Wang","doi":"10.1007/s11044-024-09968-2","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this research is to present an alternative multibody dynamic model for soft robots and to analyze the intrinsic mechanism of motion. It is difficult to directly apply traditional robot modeling methods due to the large structural deformation of soft walking robots. This paper establishes the dynamic modeling of a soft robot system with contact/impact based on the corotational formulation of the special Euclidean group <span>\\(SE\\)</span>(2). The experiments are designed to verify the dynamic model of the robot. The history of the marked points on the robot prototype is measured in real time by an ARAMIS Adjustable Camera System. Based on the dynamic model, we conducted an in-depth analysis of the entire process through which the robot achieves directional walking utilizing complex friction characteristics. Notably, the robot’s kick-up phenomenon attracted our attention, and an analytical model for predicting the critical drive acceleration is proposed. The conditions and mechanisms of the robot’s kick-up are analyzed, and effective direction is provided for designing new drive laws. Finally, several sets of key parameters affecting the walking efficiency are analyzed using the multibody model, which can provide scientific guidance for the material selection and optimization of the robot. The presented dynamic modeling approach can be freely extended to other soft robots, which will provide valuable references for the design and analysis of soft robots.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multibody dynamic modeling and motion analysis of flexible robot considering contact\",\"authors\":\"Tingke Wu, Zhuyong Liu, Ziqi Ma, Boyang Wang\",\"doi\":\"10.1007/s11044-024-09968-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this research is to present an alternative multibody dynamic model for soft robots and to analyze the intrinsic mechanism of motion. It is difficult to directly apply traditional robot modeling methods due to the large structural deformation of soft walking robots. This paper establishes the dynamic modeling of a soft robot system with contact/impact based on the corotational formulation of the special Euclidean group <span>\\\\(SE\\\\)</span>(2). The experiments are designed to verify the dynamic model of the robot. The history of the marked points on the robot prototype is measured in real time by an ARAMIS Adjustable Camera System. Based on the dynamic model, we conducted an in-depth analysis of the entire process through which the robot achieves directional walking utilizing complex friction characteristics. Notably, the robot’s kick-up phenomenon attracted our attention, and an analytical model for predicting the critical drive acceleration is proposed. The conditions and mechanisms of the robot’s kick-up are analyzed, and effective direction is provided for designing new drive laws. Finally, several sets of key parameters affecting the walking efficiency are analyzed using the multibody model, which can provide scientific guidance for the material selection and optimization of the robot. The presented dynamic modeling approach can be freely extended to other soft robots, which will provide valuable references for the design and analysis of soft robots.</p>\",\"PeriodicalId\":49792,\"journal\":{\"name\":\"Multibody System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multibody System Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11044-024-09968-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09968-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是为软体机器人提出另一种多体动力学模型,并分析其运动的内在机理。由于软体行走机器人的结构变形较大,很难直接应用传统的机器人建模方法。本文基于特殊欧几里得群 \(SE\)(2)的楞次表述,建立了软体机器人接触/撞击系统的动力学模型。实验旨在验证机器人的动态模型。机器人原型上标记点的历史由 ARAMIS 可调相机系统实时测量。在动态模型的基础上,我们深入分析了机器人利用复杂摩擦特性实现定向行走的整个过程。值得注意的是,机器人的踢起现象引起了我们的关注,并提出了预测临界驱动加速度的分析模型。分析了机器人踢起的条件和机理,为设计新的驱动规律提供了有效的方向。最后,利用多体模型分析了影响行走效率的几组关键参数,为机器人的材料选择和优化提供了科学指导。本文介绍的动态建模方法可自由扩展到其他软体机器人,为软体机器人的设计和分析提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multibody dynamic modeling and motion analysis of flexible robot considering contact

Multibody dynamic modeling and motion analysis of flexible robot considering contact

The purpose of this research is to present an alternative multibody dynamic model for soft robots and to analyze the intrinsic mechanism of motion. It is difficult to directly apply traditional robot modeling methods due to the large structural deformation of soft walking robots. This paper establishes the dynamic modeling of a soft robot system with contact/impact based on the corotational formulation of the special Euclidean group \(SE\)(2). The experiments are designed to verify the dynamic model of the robot. The history of the marked points on the robot prototype is measured in real time by an ARAMIS Adjustable Camera System. Based on the dynamic model, we conducted an in-depth analysis of the entire process through which the robot achieves directional walking utilizing complex friction characteristics. Notably, the robot’s kick-up phenomenon attracted our attention, and an analytical model for predicting the critical drive acceleration is proposed. The conditions and mechanisms of the robot’s kick-up are analyzed, and effective direction is provided for designing new drive laws. Finally, several sets of key parameters affecting the walking efficiency are analyzed using the multibody model, which can provide scientific guidance for the material selection and optimization of the robot. The presented dynamic modeling approach can be freely extended to other soft robots, which will provide valuable references for the design and analysis of soft robots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
17.60%
发文量
46
审稿时长
12 months
期刊介绍: The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations. The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信