{"title":"通过深度强化学习,在有快速移动行人的人群中实现安全且符合社会要求的机器人导航","authors":"Zhen Feng, Bingxin Xue, Chaoqun Wang, Fengyu Zhou","doi":"10.1017/s0263574724000183","DOIUrl":null,"url":null,"abstract":"<p>Safe and socially compliant navigation in a crowded environment is essential for social robots. Numerous research efforts have shown the advantages of deep reinforcement learning techniques in training efficient policies, while most of them ignore fast-moving pedestrians in the crowd. In this paper, we present a novel design of safety measure, named Risk-Area, considering collision theory and motion characteristics of different robots and humans. The geometry of Risk-Area is formed based on the real-time relative positions and velocities of the agents in the environment. Our approach perceives risk in the environment and encourages the robot to take safe and socially compliant navigation behaviors. The proposed method is verified with three existing well-known deep reinforcement learning models in densely populated environments. Experiment results demonstrate that our approach combined with the reinforcement learning techniques can efficiently perceive risk in the environment and navigate the robot with high safety in the crowds with fast-moving pedestrians.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe and socially compliant robot navigation in crowds with fast-moving pedestrians via deep reinforcement learning\",\"authors\":\"Zhen Feng, Bingxin Xue, Chaoqun Wang, Fengyu Zhou\",\"doi\":\"10.1017/s0263574724000183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Safe and socially compliant navigation in a crowded environment is essential for social robots. Numerous research efforts have shown the advantages of deep reinforcement learning techniques in training efficient policies, while most of them ignore fast-moving pedestrians in the crowd. In this paper, we present a novel design of safety measure, named Risk-Area, considering collision theory and motion characteristics of different robots and humans. The geometry of Risk-Area is formed based on the real-time relative positions and velocities of the agents in the environment. Our approach perceives risk in the environment and encourages the robot to take safe and socially compliant navigation behaviors. The proposed method is verified with three existing well-known deep reinforcement learning models in densely populated environments. Experiment results demonstrate that our approach combined with the reinforcement learning techniques can efficiently perceive risk in the environment and navigate the robot with high safety in the crowds with fast-moving pedestrians.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Safe and socially compliant robot navigation in crowds with fast-moving pedestrians via deep reinforcement learning
Safe and socially compliant navigation in a crowded environment is essential for social robots. Numerous research efforts have shown the advantages of deep reinforcement learning techniques in training efficient policies, while most of them ignore fast-moving pedestrians in the crowd. In this paper, we present a novel design of safety measure, named Risk-Area, considering collision theory and motion characteristics of different robots and humans. The geometry of Risk-Area is formed based on the real-time relative positions and velocities of the agents in the environment. Our approach perceives risk in the environment and encourages the robot to take safe and socially compliant navigation behaviors. The proposed method is verified with three existing well-known deep reinforcement learning models in densely populated environments. Experiment results demonstrate that our approach combined with the reinforcement learning techniques can efficiently perceive risk in the environment and navigate the robot with high safety in the crowds with fast-moving pedestrians.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.