{"title":"韧性弹性体和凝胶中的穆林效应综述","authors":"Lin Zhan, Shaoxing Qu, Rui Xiao","doi":"10.1007/s10338-023-00460-6","DOIUrl":null,"url":null,"abstract":"<div><p>Tough elastomers and gels have garnered broad research interest due to their wide-ranging potential applications. However, during the loading and unloading cycles, a clear stress softening behavior can be observed in many material systems, which is also named as the Mullins effect. In this work, we aim to provide a complete review of the Mullins effect in soft yet tough materials, specifically focusing on nanocomposite gels, double-network hydrogels, and multi-network elastomers. We first revisit the experimental observations for these soft materials. We then discuss the recent developments of constitutive models, emphasizing novel developments in the damage mechanisms or network representations. Some phenomenological models will also be briefly introduced. Particular attention is then placed on the anisotropic and multiaxial modeling aspects. It is demonstrated that most of the existing models fail to accurately predict the multiaxial data, posing a significant challenge for developing future anisotropic models tailored for tough gels and elastomers.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 2","pages":"181 - 214"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00460-6.pdf","citationCount":"0","resultStr":"{\"title\":\"A Review on the Mullins Effect in Tough Elastomers and Gels\",\"authors\":\"Lin Zhan, Shaoxing Qu, Rui Xiao\",\"doi\":\"10.1007/s10338-023-00460-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tough elastomers and gels have garnered broad research interest due to their wide-ranging potential applications. However, during the loading and unloading cycles, a clear stress softening behavior can be observed in many material systems, which is also named as the Mullins effect. In this work, we aim to provide a complete review of the Mullins effect in soft yet tough materials, specifically focusing on nanocomposite gels, double-network hydrogels, and multi-network elastomers. We first revisit the experimental observations for these soft materials. We then discuss the recent developments of constitutive models, emphasizing novel developments in the damage mechanisms or network representations. Some phenomenological models will also be briefly introduced. Particular attention is then placed on the anisotropic and multiaxial modeling aspects. It is demonstrated that most of the existing models fail to accurately predict the multiaxial data, posing a significant challenge for developing future anisotropic models tailored for tough gels and elastomers.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"37 2\",\"pages\":\"181 - 214\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10338-023-00460-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00460-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00460-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Review on the Mullins Effect in Tough Elastomers and Gels
Tough elastomers and gels have garnered broad research interest due to their wide-ranging potential applications. However, during the loading and unloading cycles, a clear stress softening behavior can be observed in many material systems, which is also named as the Mullins effect. In this work, we aim to provide a complete review of the Mullins effect in soft yet tough materials, specifically focusing on nanocomposite gels, double-network hydrogels, and multi-network elastomers. We first revisit the experimental observations for these soft materials. We then discuss the recent developments of constitutive models, emphasizing novel developments in the damage mechanisms or network representations. Some phenomenological models will also be briefly introduced. Particular attention is then placed on the anisotropic and multiaxial modeling aspects. It is demonstrated that most of the existing models fail to accurately predict the multiaxial data, posing a significant challenge for developing future anisotropic models tailored for tough gels and elastomers.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables