Fatemeh Heidarnejad, Ali Namvar, Seyed Mehdi Sadat, Parisa Moradi Pordanjani, Fatemeh Rezaei, Haideh Namdari, Sina Arjmand, Azam Bolhassani
{"title":"基于表位的新型多肽疫苗预防 HIV-1 的硅学设计","authors":"Fatemeh Heidarnejad, Ali Namvar, Seyed Mehdi Sadat, Parisa Moradi Pordanjani, Fatemeh Rezaei, Haideh Namdari, Sina Arjmand, Azam Bolhassani","doi":"10.1007/s10529-023-03464-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the<i> N</i>-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico designing of novel epitope-based peptide vaccines against HIV-1\",\"authors\":\"Fatemeh Heidarnejad, Ali Namvar, Seyed Mehdi Sadat, Parisa Moradi Pordanjani, Fatemeh Rezaei, Haideh Namdari, Sina Arjmand, Azam Bolhassani\",\"doi\":\"10.1007/s10529-023-03464-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the<i> N</i>-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03464-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03464-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In silico designing of novel epitope-based peptide vaccines against HIV-1
Abstract
The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.