Andrei Bobocea, Razvan Bologa, Lorena Batagan, Bogdan-Stefan Posedaru
{"title":"利用人工智能将经典学术课程转化为自适应学习流程的架构","authors":"Andrei Bobocea, Razvan Bologa, Lorena Batagan, Bogdan-Stefan Posedaru","doi":"10.24818/ea/2024/65/363","DOIUrl":null,"url":null,"abstract":"The literature on adaptive learning suggests that it can provide significant improvements to the educational process and numerous studies have found a necessity for personalised learning, which is one of the strong suits of adaptive learning. Adaptive learning platforms require that content be effective, and lack thereof has hindered large-scale adoption by adding the cost of content creation to the upfront implementation cost and creating a 'critical mass' type problem where a platform without content is ineffective and unattractive, leading to lack of interest from users and lack of funding for developing new content. Artificial intelligence (AI) technology has the potential to aid in content creation by taking on a significant part of the workload. This paper aims to explore this possibility and propose an architecture based on current artificial intelligence technologies that will help teachers and experts transform classic course materials into adaptive learning flows. The system is not autonomous and will not replace a human expert but rather will take on some of the more straightforward, but time-consuming, work. The proposed approach results in a distinct system, independent of the adaptive learning platform itself, that can help rephrase, restructure and enrich the content, resulting in an automated digital narrative, or fragment thereof, that can be exported in a format based on open standards and used within an adaptive learning platform of choice.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"24 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecture to Transform Classic Academic Courses into Adaptive Learning Flows with Artificial Intelligence\",\"authors\":\"Andrei Bobocea, Razvan Bologa, Lorena Batagan, Bogdan-Stefan Posedaru\",\"doi\":\"10.24818/ea/2024/65/363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The literature on adaptive learning suggests that it can provide significant improvements to the educational process and numerous studies have found a necessity for personalised learning, which is one of the strong suits of adaptive learning. Adaptive learning platforms require that content be effective, and lack thereof has hindered large-scale adoption by adding the cost of content creation to the upfront implementation cost and creating a 'critical mass' type problem where a platform without content is ineffective and unattractive, leading to lack of interest from users and lack of funding for developing new content. Artificial intelligence (AI) technology has the potential to aid in content creation by taking on a significant part of the workload. This paper aims to explore this possibility and propose an architecture based on current artificial intelligence technologies that will help teachers and experts transform classic course materials into adaptive learning flows. The system is not autonomous and will not replace a human expert but rather will take on some of the more straightforward, but time-consuming, work. The proposed approach results in a distinct system, independent of the adaptive learning platform itself, that can help rephrase, restructure and enrich the content, resulting in an automated digital narrative, or fragment thereof, that can be exported in a format based on open standards and used within an adaptive learning platform of choice.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"24 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.24818/ea/2024/65/363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.24818/ea/2024/65/363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Architecture to Transform Classic Academic Courses into Adaptive Learning Flows with Artificial Intelligence
The literature on adaptive learning suggests that it can provide significant improvements to the educational process and numerous studies have found a necessity for personalised learning, which is one of the strong suits of adaptive learning. Adaptive learning platforms require that content be effective, and lack thereof has hindered large-scale adoption by adding the cost of content creation to the upfront implementation cost and creating a 'critical mass' type problem where a platform without content is ineffective and unattractive, leading to lack of interest from users and lack of funding for developing new content. Artificial intelligence (AI) technology has the potential to aid in content creation by taking on a significant part of the workload. This paper aims to explore this possibility and propose an architecture based on current artificial intelligence technologies that will help teachers and experts transform classic course materials into adaptive learning flows. The system is not autonomous and will not replace a human expert but rather will take on some of the more straightforward, but time-consuming, work. The proposed approach results in a distinct system, independent of the adaptive learning platform itself, that can help rephrase, restructure and enrich the content, resulting in an automated digital narrative, or fragment thereof, that can be exported in a format based on open standards and used within an adaptive learning platform of choice.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.