Steven Chan, Mohsen Hosseini, V. Voisin, Ali Chegini, Angelica Varesi, S. Cathelin, D. M. Ayyathan, Alex Liu, Yitong Yang, Vivian Wang, Abdula Maher, Eric Grignano, Julie Haines, Angelo D'Alessandro, Kira Young, Yiyan Wu, Martina Fiumara, Samuele Ferrari, L. Naldini, Federico Gaiti, Shraddha Pai, Aaron Schimmer, Gary D. Bader, John Dick, Stephanie Z. Xie, Jennifer J. Trowbridge
{"title":"二甲双胍通过逆转 Dnmt3aR878H 造血干细胞和祖细胞的异常代谢和表观遗传状态,降低其克隆适宜性","authors":"Steven Chan, Mohsen Hosseini, V. Voisin, Ali Chegini, Angelica Varesi, S. Cathelin, D. M. Ayyathan, Alex Liu, Yitong Yang, Vivian Wang, Abdula Maher, Eric Grignano, Julie Haines, Angelo D'Alessandro, Kira Young, Yiyan Wu, Martina Fiumara, Samuele Ferrari, L. Naldini, Federico Gaiti, Shraddha Pai, Aaron Schimmer, Gary D. Bader, John Dick, Stephanie Z. Xie, Jennifer J. Trowbridge","doi":"10.21203/rs.3.rs-3874821/v1","DOIUrl":null,"url":null,"abstract":"Abstract Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, which is equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3aR878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3AR882 mutation-driven CH in humans.","PeriodicalId":21039,"journal":{"name":"Research Square","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin reduces the clonal fitness of Dnmt3aR878H hematopoietic stem and progenitor cells by reversing their aberrant metabolic and epigenetic state\",\"authors\":\"Steven Chan, Mohsen Hosseini, V. Voisin, Ali Chegini, Angelica Varesi, S. Cathelin, D. M. Ayyathan, Alex Liu, Yitong Yang, Vivian Wang, Abdula Maher, Eric Grignano, Julie Haines, Angelo D'Alessandro, Kira Young, Yiyan Wu, Martina Fiumara, Samuele Ferrari, L. Naldini, Federico Gaiti, Shraddha Pai, Aaron Schimmer, Gary D. Bader, John Dick, Stephanie Z. Xie, Jennifer J. Trowbridge\",\"doi\":\"10.21203/rs.3.rs-3874821/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, which is equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3aR878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3AR882 mutation-driven CH in humans.\",\"PeriodicalId\":21039,\"journal\":{\"name\":\"Research Square\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-3874821/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3874821/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metformin reduces the clonal fitness of Dnmt3aR878H hematopoietic stem and progenitor cells by reversing their aberrant metabolic and epigenetic state
Abstract Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, which is equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3aR878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3AR882 mutation-driven CH in humans.