Fangbin Liu, Fan Yang, D. Zheng, Haiyang Ding, Caopeng Li, G. Jepson
{"title":"中国东部泰山正断层相关地貌演化的磷灰石(U-Th)/He 热年代学约束","authors":"Fangbin Liu, Fan Yang, D. Zheng, Haiyang Ding, Caopeng Li, G. Jepson","doi":"10.2113/2023/lithosphere_2023_279","DOIUrl":null,"url":null,"abstract":"\n Taishan Mountain in the eastern China is a normal-fault-controlled range that formed during the Meso-Cenozoic, in response to large-scale extension and lithospheric thinning of the North China Craton. However, constraints on the timing of the polyphase extensional events which formed the Taishan edifice remain poorly resolved, hindering a detailed understanding of the landscape evolution of this prominent mountain. Here, we conducted apatite (U-Th)/He dating on sixteen samples from three profiles perpendicular in the Taishan Mountain, with a major view to control structures in Taishan Mountain and to resolve the Meso-Cenozoic landscape evolution. The newly determined apatite (U-Th)/He ages show a wide variation range of ~113 to 30 Ma, indicating a slow and protracted cooling history. The inverse thermal history modeling results reveal two pulses of enhanced cooling at ~80 to 60 and 55 to 50 Ma, which we interpret as exhumation related to normal fault activity. Furthermore, one-dimensional modeling indicates that the magnitude of tectonic exhumation is constrained at ≥15 m/Myr across the Yunbuqiao, Zhongtianmen, and Taishan Piedmont faults. Integrating this study and published studies, we suggest that Taishan Mountain underwent four-stage evolution since 100 Ma: (1) the whole Taishan Mountain commenced a continuous and slow exhumation under a weaker tensional environment at ~100 to 80 Ma, (2) the joint growth and interactions within a normal fault system resulted in rapid uplift and promoted the formation of the Proto-Taishan Mountain at ~80 to 60 Ma, (3) the Taishan Mountain underwent exhumation at ~55 to 50 Ma, interpreted as a tectonic response to the Taishan Piedmont Fault, and (4) the last stage (~50 to 0 Ma), the Taishan Mountain experienced protracted exhumation related to normal faulting until now. We attribute the extensive normal faulting to the subduction and slab rollback of the Izanagi-Pacific Plates, which shaped the present-day geomorphology of Taishan Mountain.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apatite (U-Th)/He Thermochronological Constraints on the Landscape Evolution Linked to the Normal Faulting in Taishan Mountain, Eastern China\",\"authors\":\"Fangbin Liu, Fan Yang, D. Zheng, Haiyang Ding, Caopeng Li, G. Jepson\",\"doi\":\"10.2113/2023/lithosphere_2023_279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Taishan Mountain in the eastern China is a normal-fault-controlled range that formed during the Meso-Cenozoic, in response to large-scale extension and lithospheric thinning of the North China Craton. However, constraints on the timing of the polyphase extensional events which formed the Taishan edifice remain poorly resolved, hindering a detailed understanding of the landscape evolution of this prominent mountain. Here, we conducted apatite (U-Th)/He dating on sixteen samples from three profiles perpendicular in the Taishan Mountain, with a major view to control structures in Taishan Mountain and to resolve the Meso-Cenozoic landscape evolution. The newly determined apatite (U-Th)/He ages show a wide variation range of ~113 to 30 Ma, indicating a slow and protracted cooling history. The inverse thermal history modeling results reveal two pulses of enhanced cooling at ~80 to 60 and 55 to 50 Ma, which we interpret as exhumation related to normal fault activity. Furthermore, one-dimensional modeling indicates that the magnitude of tectonic exhumation is constrained at ≥15 m/Myr across the Yunbuqiao, Zhongtianmen, and Taishan Piedmont faults. Integrating this study and published studies, we suggest that Taishan Mountain underwent four-stage evolution since 100 Ma: (1) the whole Taishan Mountain commenced a continuous and slow exhumation under a weaker tensional environment at ~100 to 80 Ma, (2) the joint growth and interactions within a normal fault system resulted in rapid uplift and promoted the formation of the Proto-Taishan Mountain at ~80 to 60 Ma, (3) the Taishan Mountain underwent exhumation at ~55 to 50 Ma, interpreted as a tectonic response to the Taishan Piedmont Fault, and (4) the last stage (~50 to 0 Ma), the Taishan Mountain experienced protracted exhumation related to normal faulting until now. We attribute the extensive normal faulting to the subduction and slab rollback of the Izanagi-Pacific Plates, which shaped the present-day geomorphology of Taishan Mountain.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2023/lithosphere_2023_279\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2023/lithosphere_2023_279","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Apatite (U-Th)/He Thermochronological Constraints on the Landscape Evolution Linked to the Normal Faulting in Taishan Mountain, Eastern China
Taishan Mountain in the eastern China is a normal-fault-controlled range that formed during the Meso-Cenozoic, in response to large-scale extension and lithospheric thinning of the North China Craton. However, constraints on the timing of the polyphase extensional events which formed the Taishan edifice remain poorly resolved, hindering a detailed understanding of the landscape evolution of this prominent mountain. Here, we conducted apatite (U-Th)/He dating on sixteen samples from three profiles perpendicular in the Taishan Mountain, with a major view to control structures in Taishan Mountain and to resolve the Meso-Cenozoic landscape evolution. The newly determined apatite (U-Th)/He ages show a wide variation range of ~113 to 30 Ma, indicating a slow and protracted cooling history. The inverse thermal history modeling results reveal two pulses of enhanced cooling at ~80 to 60 and 55 to 50 Ma, which we interpret as exhumation related to normal fault activity. Furthermore, one-dimensional modeling indicates that the magnitude of tectonic exhumation is constrained at ≥15 m/Myr across the Yunbuqiao, Zhongtianmen, and Taishan Piedmont faults. Integrating this study and published studies, we suggest that Taishan Mountain underwent four-stage evolution since 100 Ma: (1) the whole Taishan Mountain commenced a continuous and slow exhumation under a weaker tensional environment at ~100 to 80 Ma, (2) the joint growth and interactions within a normal fault system resulted in rapid uplift and promoted the formation of the Proto-Taishan Mountain at ~80 to 60 Ma, (3) the Taishan Mountain underwent exhumation at ~55 to 50 Ma, interpreted as a tectonic response to the Taishan Piedmont Fault, and (4) the last stage (~50 to 0 Ma), the Taishan Mountain experienced protracted exhumation related to normal faulting until now. We attribute the extensive normal faulting to the subduction and slab rollback of the Izanagi-Pacific Plates, which shaped the present-day geomorphology of Taishan Mountain.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.