POBEVM:通过逐步优化目标体和边缘进行实时视频匹配

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09731
Jianming Xian
{"title":"POBEVM:通过逐步优化目标体和边缘进行实时视频匹配","authors":"Jianming Xian","doi":"10.48550/arXiv.2402.09731","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNNs) based approaches have achieved great performance in video matting. Many of these methods can produce accurate alpha estimation for the target body but typically yield fuzzy or incorrect target edges. This is usually caused by the following reasons: 1) The current methods always treat the target body and edge indiscriminately; 2) Target body dominates the whole target with only a tiny proportion target edge. For the first problem, we propose a CNN-based module that separately optimizes the matting target body and edge (SOBE). And on this basis, we introduce a real-time, trimap-free video matting method via progressively optimizing the matting target body and edge (POBEVM) that is much lighter than previous approaches and achieves significant improvements in the predicted target edge. For the second problem, we propose an Edge-L1-Loss (ELL) function that enforces our network on the matting target edge. Experiments demonstrate our method outperforms prior trimap-free matting methods on both Distinctions-646 (D646) and VideoMatte240K(VM) dataset, especially in edge optimization.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"29 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POBEVM: Real-time Video Matting via Progressively Optimize the Target Body and Edge\",\"authors\":\"Jianming Xian\",\"doi\":\"10.48550/arXiv.2402.09731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks (CNNs) based approaches have achieved great performance in video matting. Many of these methods can produce accurate alpha estimation for the target body but typically yield fuzzy or incorrect target edges. This is usually caused by the following reasons: 1) The current methods always treat the target body and edge indiscriminately; 2) Target body dominates the whole target with only a tiny proportion target edge. For the first problem, we propose a CNN-based module that separately optimizes the matting target body and edge (SOBE). And on this basis, we introduce a real-time, trimap-free video matting method via progressively optimizing the matting target body and edge (POBEVM) that is much lighter than previous approaches and achieves significant improvements in the predicted target edge. For the second problem, we propose an Edge-L1-Loss (ELL) function that enforces our network on the matting target edge. Experiments demonstrate our method outperforms prior trimap-free matting methods on both Distinctions-646 (D646) and VideoMatte240K(VM) dataset, especially in edge optimization.\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.09731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度卷积神经网络(CNN)的方法在视频消隐方面取得了很好的效果。其中许多方法可以对目标体进行精确的阿尔法估计,但通常会产生模糊或不正确的目标边缘。这通常是由以下原因造成的:1) 目前的方法总是不加区分地处理目标主体和边缘;2) 目标主体在整个目标中占主导地位,而目标边缘只占很小的比例。针对第一个问题,我们提出了一种基于 CNN 的模块,可分别优化目标体和边缘的匹配(SOBE)。在此基础上,我们引入了一种通过逐步优化消隐目标身体和边缘的实时无修剪视频消隐方法(POBEVM),该方法比以往的方法更轻便,并能显著改善预测的目标边缘。针对第二个问题,我们提出了一种边缘-L1-损失(ELL)函数,该函数可在消隐目标边缘上执行我们的网络。实验证明,在 Distinctions-646 (D646) 和 VideoMatte240K(VM) 数据集上,我们的方法优于之前的无修剪消隐方法,尤其是在边缘优化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POBEVM: Real-time Video Matting via Progressively Optimize the Target Body and Edge
Deep convolutional neural networks (CNNs) based approaches have achieved great performance in video matting. Many of these methods can produce accurate alpha estimation for the target body but typically yield fuzzy or incorrect target edges. This is usually caused by the following reasons: 1) The current methods always treat the target body and edge indiscriminately; 2) Target body dominates the whole target with only a tiny proportion target edge. For the first problem, we propose a CNN-based module that separately optimizes the matting target body and edge (SOBE). And on this basis, we introduce a real-time, trimap-free video matting method via progressively optimizing the matting target body and edge (POBEVM) that is much lighter than previous approaches and achieves significant improvements in the predicted target edge. For the second problem, we propose an Edge-L1-Loss (ELL) function that enforces our network on the matting target edge. Experiments demonstrate our method outperforms prior trimap-free matting methods on both Distinctions-646 (D646) and VideoMatte240K(VM) dataset, especially in edge optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信