通过伽罗瓦场上的加法字符构建 CCC 和 ZCCS

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09757
Gobinda Ghosh, S. Majhi, Subhabrata Paul
{"title":"通过伽罗瓦场上的加法字符构建 CCC 和 ZCCS","authors":"Gobinda Ghosh, S. Majhi, Subhabrata Paul","doi":"10.48550/arXiv.2402.09757","DOIUrl":null,"url":null,"abstract":"The rapid progression in wireless communication technologies, especially in multicarrier code-division multiple access (MC-CDMA), there is a need of advanced code construction methods. Traditional approaches, mainly based on generalized Boolean functions, have limitations in code length versatility. This paper introduces a novel approach to constructing complete complementary codes (CCC) and Z-complementary code sets (ZCCS), for reducing interference in MC-CDMA systems. The proposed construction, distinct from Boolean function-based approaches, employs additive characters over Galois fields GF($p^{r}$), where $p$ is prime and $r$ is a positive integer. First, we develop CCCs with lengths of $p^{r}$, which are then extended to construct ZCCS with both unreported lengths and sizes of $np^{r}$, where $n$ are arbitrary positive integers. The versatility of this method is further highlighted as it includes the lengths of ZCCS reported in prior studies as special cases, underscoring the method's comprehensive nature and superiority.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"20 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of CCC and ZCCS Through Additive Characters Over Galois Field\",\"authors\":\"Gobinda Ghosh, S. Majhi, Subhabrata Paul\",\"doi\":\"10.48550/arXiv.2402.09757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid progression in wireless communication technologies, especially in multicarrier code-division multiple access (MC-CDMA), there is a need of advanced code construction methods. Traditional approaches, mainly based on generalized Boolean functions, have limitations in code length versatility. This paper introduces a novel approach to constructing complete complementary codes (CCC) and Z-complementary code sets (ZCCS), for reducing interference in MC-CDMA systems. The proposed construction, distinct from Boolean function-based approaches, employs additive characters over Galois fields GF($p^{r}$), where $p$ is prime and $r$ is a positive integer. First, we develop CCCs with lengths of $p^{r}$, which are then extended to construct ZCCS with both unreported lengths and sizes of $np^{r}$, where $n$ are arbitrary positive integers. The versatility of this method is further highlighted as it includes the lengths of ZCCS reported in prior studies as special cases, underscoring the method's comprehensive nature and superiority.\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.09757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无线通信技术的飞速发展,特别是多载波码分多址(MC-CDMA)技术的发展,需要有先进的编码构造方法。传统方法主要基于广义布尔函数,在代码长度的通用性方面存在局限性。本文介绍了一种构建完整互补码 (CCC) 和 Z 互补码组 (ZCCS) 的新方法,以减少 MC-CDMA 系统中的干扰。与基于布尔函数的方法不同,本文提出的构造采用伽罗瓦域 GF($p^{r}$)上的加法字符,其中$p$为素数,$r$为正整数。首先,我们开发了长度为 $p^{r}$ 的 CCC,然后将其扩展到构建长度和大小均为 $np^{r}$ 的 ZCCS,其中 $n$ 为任意正整数。由于该方法将先前研究中报告的 ZCCS 长度作为特例纳入其中,从而进一步突出了该方法的多功能性,强调了该方法的全面性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of CCC and ZCCS Through Additive Characters Over Galois Field
The rapid progression in wireless communication technologies, especially in multicarrier code-division multiple access (MC-CDMA), there is a need of advanced code construction methods. Traditional approaches, mainly based on generalized Boolean functions, have limitations in code length versatility. This paper introduces a novel approach to constructing complete complementary codes (CCC) and Z-complementary code sets (ZCCS), for reducing interference in MC-CDMA systems. The proposed construction, distinct from Boolean function-based approaches, employs additive characters over Galois fields GF($p^{r}$), where $p$ is prime and $r$ is a positive integer. First, we develop CCCs with lengths of $p^{r}$, which are then extended to construct ZCCS with both unreported lengths and sizes of $np^{r}$, where $n$ are arbitrary positive integers. The versatility of this method is further highlighted as it includes the lengths of ZCCS reported in prior studies as special cases, underscoring the method's comprehensive nature and superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信