解锁结构测量:介绍 PDD--位置话语一致性的自动度量标准

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10175
Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier
{"title":"解锁结构测量:介绍 PDD--位置话语一致性的自动度量标准","authors":"Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier","doi":"10.48550/arXiv.2402.10175","DOIUrl":null,"url":null,"abstract":"Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"26 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence\",\"authors\":\"Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier\",\"doi\":\"10.48550/arXiv.2402.10175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"26 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.10175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的大型语言模型(LLM)在将生成的文本与各种任务中的用户意图相一致方面表现出色。说到长文本生成,人们对从语篇一致性角度生成文本越来越感兴趣。然而,现有的词汇或语义度量标准,如 BLEU、ROUGE、BertScore 等,无法有效捕捉语篇连贯性。因此,开发针对特定语篇的自动评估方法来评估 LLM 的输出值得我们更多关注和探索。在本文中,我们提出了一种新颖的自动度量方法,旨在量化两篇长篇文章之间的话语分歧。在三个代表性领域的数据集上进行的广泛实验表明,我们的度量方法与人类偏好和 GPT-4 连贯性评估更为一致,优于现有的评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence
Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信