Hailong Wang, Yongliang Yao, Guangdong Zhang, Jidong Pan, Longlong Gao, Hai Jin, Chuang Wang
{"title":"通过小波阈值化 SVD 和 VMD 增强对局部放电信号的噪声抑制","authors":"Hailong Wang, Yongliang Yao, Guangdong Zhang, Jidong Pan, Longlong Gao, Hai Jin, Chuang Wang","doi":"10.1155/2024/5676986","DOIUrl":null,"url":null,"abstract":"Partial discharge evaluation is a principal method for assessing insulation conditions in power transformers. Traditional singular value decomposition (SVD) approaches, however, face issues like high residual noise and loss of signal details in white noise suppression. This article introduces an advanced denoising algorithm integrating SVD, variational mode decomposition (VMD), and wavelet thresholding to effectively address mixed noise in on-site power transformer assessments. The algorithm initially employs SVD to suppress mixed noise, specifically targeting narrowband interference by decomposing the noisy signal and nullifying the corresponding singular values. Post-SVD, the signal is further processed through VMD, with its modal components refined via wavelet thresholding. The final reconstruction of these denoised components effectively eliminates white noise. Applied to an input signal with a signal-to-noise ratio of -27.593 dB, the proposed method achieves a postdenoising ratio of 13.654 dB. Comparative analysis indicates its superiority over existing algorithms in mitigating white noise and narrowband interference and more accurately restoring the partial discharge signal.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Noise Suppression in Partial Discharge Signals via SVD and VMD with Wavelet Thresholding\",\"authors\":\"Hailong Wang, Yongliang Yao, Guangdong Zhang, Jidong Pan, Longlong Gao, Hai Jin, Chuang Wang\",\"doi\":\"10.1155/2024/5676986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial discharge evaluation is a principal method for assessing insulation conditions in power transformers. Traditional singular value decomposition (SVD) approaches, however, face issues like high residual noise and loss of signal details in white noise suppression. This article introduces an advanced denoising algorithm integrating SVD, variational mode decomposition (VMD), and wavelet thresholding to effectively address mixed noise in on-site power transformer assessments. The algorithm initially employs SVD to suppress mixed noise, specifically targeting narrowband interference by decomposing the noisy signal and nullifying the corresponding singular values. Post-SVD, the signal is further processed through VMD, with its modal components refined via wavelet thresholding. The final reconstruction of these denoised components effectively eliminates white noise. Applied to an input signal with a signal-to-noise ratio of -27.593 dB, the proposed method achieves a postdenoising ratio of 13.654 dB. Comparative analysis indicates its superiority over existing algorithms in mitigating white noise and narrowband interference and more accurately restoring the partial discharge signal.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5676986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5676986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Noise Suppression in Partial Discharge Signals via SVD and VMD with Wavelet Thresholding
Partial discharge evaluation is a principal method for assessing insulation conditions in power transformers. Traditional singular value decomposition (SVD) approaches, however, face issues like high residual noise and loss of signal details in white noise suppression. This article introduces an advanced denoising algorithm integrating SVD, variational mode decomposition (VMD), and wavelet thresholding to effectively address mixed noise in on-site power transformer assessments. The algorithm initially employs SVD to suppress mixed noise, specifically targeting narrowband interference by decomposing the noisy signal and nullifying the corresponding singular values. Post-SVD, the signal is further processed through VMD, with its modal components refined via wavelet thresholding. The final reconstruction of these denoised components effectively eliminates white noise. Applied to an input signal with a signal-to-noise ratio of -27.593 dB, the proposed method achieves a postdenoising ratio of 13.654 dB. Comparative analysis indicates its superiority over existing algorithms in mitigating white noise and narrowband interference and more accurately restoring the partial discharge signal.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.