基于机器学习的中小型企业信用销售风险管理

Dr. Rojalin Pani, Dr. M. Rajendaran, Rishabh Kumar, Nidhi Mishra, Dr. K. Suresh Kumar, Prof (Dr) Sumeet Gupta
{"title":"基于机器学习的中小型企业信用销售风险管理","authors":"Dr. Rojalin Pani, Dr. M. Rajendaran, Rishabh Kumar, Nidhi Mishra, Dr. K. Suresh Kumar, Prof (Dr) Sumeet Gupta","doi":"10.52783/jier.v4i1.583","DOIUrl":null,"url":null,"abstract":"Sustaining and expanding the finances of small and midsize companies (SMBs) depends on efficient credit risk management. This study redefines credit risk assessment for SMBs via the use of machine learning (ML), hence introducing a disruptive methodology. The all-inclusive approach includes feature selection, preprocessing, data collecting, and the use of ML models, with an emphasis on behavioral insights integration and real-world applicability. The results imply that Random Forests and other machine learning models are superior at predicting credit risk, which may lead to a sea shift in the way SMBs handle credit risk. Improving the research's practical implications involves applying models to actual credit risk management systems and incorporating insights from behavioral economics. Possible future research directions include studying how models adapt dynamically, using different types of data, enhancing explain ability via XAI, and fostering collaborative efforts to develop industry-specific best practices. By outlining the ins and outs of credit sales, this research helps small and medium-sized companies (SMBs) adjust and remain resilient in the face of changing market conditions.","PeriodicalId":496224,"journal":{"name":"Journal of Informatics Education and Research","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Risk Management of Credit Sales in Small and Midsize Business\",\"authors\":\"Dr. Rojalin Pani, Dr. M. Rajendaran, Rishabh Kumar, Nidhi Mishra, Dr. K. Suresh Kumar, Prof (Dr) Sumeet Gupta\",\"doi\":\"10.52783/jier.v4i1.583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustaining and expanding the finances of small and midsize companies (SMBs) depends on efficient credit risk management. This study redefines credit risk assessment for SMBs via the use of machine learning (ML), hence introducing a disruptive methodology. The all-inclusive approach includes feature selection, preprocessing, data collecting, and the use of ML models, with an emphasis on behavioral insights integration and real-world applicability. The results imply that Random Forests and other machine learning models are superior at predicting credit risk, which may lead to a sea shift in the way SMBs handle credit risk. Improving the research's practical implications involves applying models to actual credit risk management systems and incorporating insights from behavioral economics. Possible future research directions include studying how models adapt dynamically, using different types of data, enhancing explain ability via XAI, and fostering collaborative efforts to develop industry-specific best practices. By outlining the ins and outs of credit sales, this research helps small and medium-sized companies (SMBs) adjust and remain resilient in the face of changing market conditions.\",\"PeriodicalId\":496224,\"journal\":{\"name\":\"Journal of Informatics Education and Research\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informatics Education and Research\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.52783/jier.v4i1.583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informatics Education and Research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.52783/jier.v4i1.583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中小型企业(SMBs)能否维持和扩大融资取决于高效的信用风险管理。本研究通过使用机器学习(ML)重新定义了中小型企业的信用风险评估,从而引入了一种颠覆性的方法。该方法包罗万象,包括特征选择、预处理、数据收集和使用 ML 模型,重点是行为洞察的整合和现实世界的适用性。研究结果表明,随机森林和其他机器学习模型在预测信用风险方面更胜一筹,这可能会导致中小企业处理信用风险的方式发生巨大转变。要提高研究的实际意义,需要将模型应用到实际的信用风险管理系统中,并结合行为经济学的见解。未来可能的研究方向包括:研究模型如何动态适应、使用不同类型的数据、通过 XAI 增强解释能力,以及促进合作以开发特定行业的最佳实践。通过概述信用销售的来龙去脉,本研究有助于中小型企业(SMB)在面对不断变化的市场环境时进行调整并保持弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Risk Management of Credit Sales in Small and Midsize Business
Sustaining and expanding the finances of small and midsize companies (SMBs) depends on efficient credit risk management. This study redefines credit risk assessment for SMBs via the use of machine learning (ML), hence introducing a disruptive methodology. The all-inclusive approach includes feature selection, preprocessing, data collecting, and the use of ML models, with an emphasis on behavioral insights integration and real-world applicability. The results imply that Random Forests and other machine learning models are superior at predicting credit risk, which may lead to a sea shift in the way SMBs handle credit risk. Improving the research's practical implications involves applying models to actual credit risk management systems and incorporating insights from behavioral economics. Possible future research directions include studying how models adapt dynamically, using different types of data, enhancing explain ability via XAI, and fostering collaborative efforts to develop industry-specific best practices. By outlining the ins and outs of credit sales, this research helps small and medium-sized companies (SMBs) adjust and remain resilient in the face of changing market conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信