Xiaoyang Chen, Yunfei Li, Huayue Sun, Xueli An, Jihua Tang
{"title":"玉米雄性不育的分子机制","authors":"Xiaoyang Chen, Yunfei Li, Huayue Sun, Xueli An, Jihua Tang","doi":"10.1007/s11105-024-01441-w","DOIUrl":null,"url":null,"abstract":"<p>Maize (<i>Zea mays</i>) represents one of the most successful uses of heterosis among crops. Hybrid maize seeds can be produced by crossing a male-sterile female parent with a male parent as the pollen donor to achieve high seed purity at low cost. Cytoplasmic male sterility (CMS) has been widely used for maize hybrid seed production. Recently, several hybrid seed production technologies based on genic male sterility (GMS) genes have been developed. In addition, the identification of environment-sensitive genic male sterility (EGMS) genes provides opportunities for the two-line system to be applied in maize hybrid seed production. In this review, we systematically summarize the male-sterile genes and molecular mechanisms of male sterility in maize. Future prospects for the study of maize male sterility are highlighted. Future research will enhance our understanding of the molecular regulatory networks of male sterility and promote the process of maize hybrid seed production using male sterile lines.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanisms of Male Sterility in Maize\",\"authors\":\"Xiaoyang Chen, Yunfei Li, Huayue Sun, Xueli An, Jihua Tang\",\"doi\":\"10.1007/s11105-024-01441-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maize (<i>Zea mays</i>) represents one of the most successful uses of heterosis among crops. Hybrid maize seeds can be produced by crossing a male-sterile female parent with a male parent as the pollen donor to achieve high seed purity at low cost. Cytoplasmic male sterility (CMS) has been widely used for maize hybrid seed production. Recently, several hybrid seed production technologies based on genic male sterility (GMS) genes have been developed. In addition, the identification of environment-sensitive genic male sterility (EGMS) genes provides opportunities for the two-line system to be applied in maize hybrid seed production. In this review, we systematically summarize the male-sterile genes and molecular mechanisms of male sterility in maize. Future prospects for the study of maize male sterility are highlighted. Future research will enhance our understanding of the molecular regulatory networks of male sterility and promote the process of maize hybrid seed production using male sterile lines.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01441-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01441-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Maize (Zea mays) represents one of the most successful uses of heterosis among crops. Hybrid maize seeds can be produced by crossing a male-sterile female parent with a male parent as the pollen donor to achieve high seed purity at low cost. Cytoplasmic male sterility (CMS) has been widely used for maize hybrid seed production. Recently, several hybrid seed production technologies based on genic male sterility (GMS) genes have been developed. In addition, the identification of environment-sensitive genic male sterility (EGMS) genes provides opportunities for the two-line system to be applied in maize hybrid seed production. In this review, we systematically summarize the male-sterile genes and molecular mechanisms of male sterility in maize. Future prospects for the study of maize male sterility are highlighted. Future research will enhance our understanding of the molecular regulatory networks of male sterility and promote the process of maize hybrid seed production using male sterile lines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.