Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc
{"title":"通过电位法解决穆林斯-塞克尔卡问题","authors":"Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc","doi":"10.1002/mana.202300350","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>r</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^r({\\mathbb {R}})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$r\\in (3/2,2)$</annotation>\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350","citationCount":"0","resultStr":"{\"title\":\"The Mullins–Sekerka problem via the method of potentials\",\"authors\":\"Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc\",\"doi\":\"10.1002/mana.202300350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>r</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^r({\\\\mathbb {R}})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$r\\\\in (3/2,2)$</annotation>\\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Mullins–Sekerka problem via the method of potentials
It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces with . This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.