Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc
{"title":"通过电位法解决穆林斯-塞克尔卡问题","authors":"Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc","doi":"10.1002/mana.202300350","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>r</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^r({\\mathbb {R}})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$r\\in (3/2,2)$</annotation>\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 5","pages":"1960-1977"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350","citationCount":"0","resultStr":"{\"title\":\"The Mullins–Sekerka problem via the method of potentials\",\"authors\":\"Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc\",\"doi\":\"10.1002/mana.202300350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>r</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^r({\\\\mathbb {R}})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$r\\\\in (3/2,2)$</annotation>\\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 5\",\"pages\":\"1960-1977\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Mullins–Sekerka problem via the method of potentials
It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces with . This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index