通过电位法解决穆林斯-塞克尔卡问题

Pub Date : 2024-02-23 DOI:10.1002/mana.202300350
Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc
{"title":"通过电位法解决穆林斯-塞克尔卡问题","authors":"Joachim Escher,&nbsp;Anca-Voichita Matioc,&nbsp;Bogdan-Vasile Matioc","doi":"10.1002/mana.202300350","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>r</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^r({\\mathbb {R}})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$r\\in (3/2,2)$</annotation>\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350","citationCount":"0","resultStr":"{\"title\":\"The Mullins–Sekerka problem via the method of potentials\",\"authors\":\"Joachim Escher,&nbsp;Anca-Voichita Matioc,&nbsp;Bogdan-Vasile Matioc\",\"doi\":\"10.1002/mana.202300350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>r</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^r({\\\\mathbb {R}})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$r\\\\in (3/2,2)$</annotation>\\n </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,二维 Mullins-Sekerka 问题在所有具有 .这是第一个在无界几何中建立这一问题的结果。我们方法的新颖之处在于利用势理论将模型表述为一个由奇异积分算子表示的非线性演化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Mullins–Sekerka problem via the method of potentials

It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces H r ( R ) $H^r({\mathbb {R}})$ with r ( 3 / 2 , 2 ) $r\in (3/2,2)$ . This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信